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Abstract

Probabilistic, and in particular Bayesian, methods for modelling data are becoming increas-
ingly sophisticated. This has been fuelled by the demand to analyse the enormous wealth
of data being produced by the biomedical sciences. In this thesis we present a variety of
unsupervised generative probabilistic models loosely based around mixtures of distributions.
The motivation behind using these models is that the mixture reflects aspects of a biomedical
process which has a number of contributing factors. We analyse gene expression data from
microarray, sequence motif data and radiological data. We attempt to model the interactions
between motif data and gene expression for yeast, and we perform in depth analysis of gene
expression data for four breast cancer datasets. The radiological data comes from computed
tomography scans and radiologist reports. We model the interaction between image data
from scans and textual data from reports for a number of lung diseases. A common theme
throughout this thesis is data fusion: this can be the joint modelling of two separate datasets,
comparison of equivalent data sets from independent sources or simply the incorporation of
external information into the model.
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Chapter 1

Introduction

1.1 Data Types

In this section we shall introduce the types of data we will be analysing later in this thesis. All

the data is taken from the biomedical sciences, in particular from the fields of bio-informatics

and medical informatics. We do not attempt to provide an in depth background to the

fields of molecular biology and radiology but merely to provide enough information to give a

justified motivation for the work in this thesis.

1.1.1 Microarray and Motif Data

In every living organism there are four major types of molecule: deoxyribonucleic acid (DNA),

proteins, small molecules (eg. amino acids) and RNA. It is in the DNA and RNA where the

genetic code for that individual is held. Each time a cell divides this DNA is replicated and

passed on to the daughter cell. DNA is constructed as a single or double stranded polymer

of the nucleotides: Adenine (A), Guanine (G), Thymine (T) and Cytosine (C). In the case

of double stranded DNA, specific pairs of nucleotides form weak bonds together. In terms of

bond pairs, A↔ T and C ↔ G. This weak bonding means that two complementary strands

of DNA will form a stable structure known as the DNA double helix. A consequence of this

complimentary bonding is that either strand of a double stranded DNA can be reconstructed
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from the other. Much of the structure and internal workings of living organisms is built

around proteins. Each protein is a polymer made of a sequence of amino acids. There are 20

amino acids, made up of a triplet of RNA codons labelled U,C,A,G. With 43 = 64 possible

combinations there is a many codon triplet to one amino acid mapping. Like DNA, RNA

is also a polymer of nucleotides but with Thymine being replaced by Uracil (U), this slight

variation in bases means that RNA is always single stranded. RNA does however bind to a

complimentary strand of DNA with A↔ U . This is a very important property which is used

in biotechnology.

An individual gene is a stretch of DNA which, under appropriate conditions, manufactures

one or more proteins. The Central Dogma of molecular biology, sometimes called Crick’s

Central Dogma (named after Francis Crick who first coined the term in the 1950’s), is a

general assumption about the flow of genetic information. It states that sequential (genetic)

information cannot be transferred from a protein to either a protein or a nucleic acid. Closely

related to this is the overall model for directional information flow in molecular biology. This

can be summarised as

DNA→ RNA→ Protein

A fuller model (image taken from [2]) is given in figure 1.1.

This is broken down into four distinct stages: Transcription, Splicing, Translation and

Replication.

• Transcription: This is the process by which a section of DNA is used as a template

in the production of messenger RNA (mRNA). Hence information is transferred as

DNA → RNA. This is mediated by RNA polymerase and the relevant transcription

factors.

• Splicing: This is an additional stage of processing. After transcription we have a

stretch of what is called pre-mRNA (this unprocessed or partially-processed messenger

RNA is called ”pre-mRNA” or ”hnRNA”). This is then modified to remove certain

stretches of non-coding sequences called introns. The remaining code includes protein-
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Fig. 1.1: Information flow in Molecular Biology.
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coding sequences and are called exons. Sometimes one pre-mRNA message may be

spliced in several different ways, allowing a single gene to encode multiple proteins.

This process is called alternative splicing.

• Translation: With the processed mRNA in hand the final stage is to convert this

information into the amino acids that make up a protein. In translation, mRNA along

with transfer RNA (tRNA), and ribosomes, work together to produce proteins.

• Replication Finally, this is the mechanism by which copies of the master template are

made. Proteins unwind the double stranded helix and then, through the action of DNA

polymerase, we are left with a copy of the original

The aim of Microarray technology is to try and measure the level of activity (ultimately the

level of protein production) of individual genes. The motivation for such measurements is to

indicate the differences in gene activity under different conditions, eg. Yeast gene activity

under stress testing or gene activity in normal and diseased cells. Although the level of mRNA

will not necessarily exactly match that of its target protein (the relationship if far from trivial

due to variable protein production rates and half lives of mRNA) it is accepted that this will

provide a good indication of protein production. It is the mRNA that is measured in a

microarray experiment.

There are two main techniques for measuring the level of mRNA in a sample, these are Spotted

Microarrays and Oligonucleotide Microarrays. Analysis of cells with Spotted Microarrays will

give a level of mRNA relative to control whereas Oligonucleotide Microarrays require no

control. The procedures are summarised below:

• Spotted Microarrays : On each spotted array many copies of the DNA sequences of

genes are printed at specific locations (these are the spots). Samples of mRNA are then

taken from the target cell and a separate control cell, using these two complimentary

DNA (cDNA) sequences are constructed. To distinguish the target cDNA and control

cDNA they are each treated with different fluorescent dyes. When this resulting cDNA

is combined and hybridised over the microarray sections of it will bind to the corre-

sponding DNA at specific locations on the array. The array is then washed to remove

non-specific binding. A laser is then used to determine the intensity of each dye at each
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spot. This is a measure the level of hybridisation for both the target and control sample

for each gene. It is common to use the log of the ratio of the two levels to maintain

a symmetry between over and under expression of genes. An example Spotted Array

is given in figure 1.2. In this case red corresponds to over expression compared to the

control cell and green corresponds to under expression. Additionally black indicates

poor hybridization and yellow an even level of hybridization between the target and

control cell.

• Oligonucleotide Microarrays : For these arrays the underlying principle and mo-

tivations are the same but the practical implementation is somewhat different. These

Microarrays consist of Oligonucleotide (these are 25 nucleotide long polymers) that are

positioned on a silicon array at specific sites called probes. The Oligonucleotides are

chosen to match DNA subsequences of the genes which we are measuring the activity

for. Each microarray will have up to a million unique Oligonucleotide probes. Each

gene corresponds to at least one set of 11 different probe pairs. Probe pairs are made

up of a of a 25-base-pair perfect-match (PM) Oligonucleotide probe and a 25-base-pair

mismatch (MM) probe. The mismatch probe is identical to the match probe but has

the central nucleotide reversed. Once again a cDNA sample is washed over the microar-

ray and the level of hybridisation at each probe measured. The information from each

probe can then be combined to give an expression value for each gene. By analysing

the difference in signal of the PM and MM probes a statistical confidence, known com-

monly as the p-value, in the overall expression can be given. Additionally a rating of

absent (A), present (P), or marginal call (M) is given for each gene based on significant

deviation in expression from zero. Oligonucleotide Microarrays are a newer technology

and have shown to be more accurate than Spotted Arrays. For more information see

[3].

A Sequence Motif is a string of amino-acids or nucleotides which has been deemed biologi-

cally significant. Significance can be determined by experimental or statistical means. Motifs

found within the exon of a gene are thought to encode common structural elements of the

final protein (structural motifs). Regulator Sequence Motifs are found outside of the exon,

these are sequences where transcription factors preferentially bind and it is thought that,

rather than encoding common structural elements, they influence the shape of the final pro-

tein. In chapter 5 we shall look at the correspondence between gene expression and Regulator
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Fig. 1.2: Dyes indicate the level of complimentary binding to a particular sequence.
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Sequence Motif abundance. Additionally there are Short coding motifs which lack any rela-

tionship to structure in the final protein. Motifs need not be exact strings, they can contain

wild cards and logical operators. We shall give a well know example, the N-glycosylation

Motif, using the standard amino acid abbreviations:

Asn, anything but Pro, Ser or Thr, anything but Pro

1.1.2 Radiological Data

Computed Tomography (CT) or Computed Axial Tomography (CAT) is a method of medical

imaging that generates a 3D internal picture of the body. As a technique, CT was invented

in the early 1970’s by Godfrey Hounsfield who subsequently went on to share the Nobel

Prize in 1979 for his work in this area. The first CT scanners were used to image sections of

the brain, since then the technique has been extended to image all other areas of the body.

There have been many generations of improvement in the technology with improved speed,

detail and a lowering of the radiation dosage needed. However, CT scans still expose the

patient to radiation several times that of an x-ray so will often be reserved for more seriously

ill patients. CT scanners work by rotating, in a circular fashion, an x-ray around the area

of the body which is to be imaged. Sensors on the opposite side of the circle then detect

the intensity of the received x-rays. This data is the collated and then using tomographic

reconstruction a series of 512× 512 images are generated. Each 512× 512 slice is a matrix of

values representing the density of tissue at a single point. The pixel density is measured in the

Hounsfield units which are calibrated from -1000 for air to +1000 for bone. Three examples of

CT images of the chest are given in figures 1.3, 1.4 and 1.5. It is now commonplace to use CT

as method of imaging for many areas of the body. In this thesis we will restrict ourselves to

CT images of the chest. CT is particularly well suited to the detection and diagnosis of both

subtle and chronic changes in the lung parenchyma. In a number of cases, such as cancer and

pneumonia, it is necessary to give a contrast agent to the patient to increase or decrease the

intensity of certain aspects of the resulting scan. The thickness and detail of the scans can be

changed depending on the nature of the suspected disease. For example, chronic interstitial

processes such as emphysema and fibrosis require thin sections with high spatial frequency

reconstructions. Good introductions to Chest Radiology and the respiratory system are given
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in [46, 65].We will now give a brief overview of lung diseases that are diagnosed via CT and

a number of examples of chest scans with common disease types.

CT generates more detailed images than conventional x-rays and so is often used to first

detect tumours in the lung region or mediastinum (the area between the lungs). It also can

be used as a repeat technique to monitor a cancerous tissues response to treatment; this is

known as nodule tracking. Pneumonia and tuberculosis are also visible on a CT scan. Figure

1.3 shows CT scans taken from 3 patients all suffering from fibrosis. Fibrosis is a very general

term and either refers to scar tissue that forms as a consequence of another disorder, or,

where there is no known cause, it is called Idiopathic Pulmonary Fibrosis. Fibrotic tissue is

denser than normal tissue and so will appear whiter on a CT scan. It is often described as

reticular, that is forming a mesh like structure, and in the latter stages of fibrosis the lung

can take on a honeycomb appearance. Another common lung disorder is Emphysema. This

is a permanent formation of air sacks in the lung field, these air spaces will appear as dark

patches on the CT scan as they have a very low density. Consolidation in a lung is an area

that contains fluid or other material which should normally contain air. This will generally

appear as denser, that is whiter on the CT image. A new classification of lung disorder that

is not visible on x-rays is Ground Glass Opacification. This is defined by [32] as “hazy areas

of increased attenuation without obscuration of the underlying vessels”. It is indicative of

early stage consolidation or fibrosis.

The first example in figure 1.3 shows the early stages of fibrosis, which is characterised by

a faint wispy appearance, particularly toward the perimeter of the lung field. In the second

example this patient is suffering from severe fibrosis in combination with bullous Emphysema.

The third example shows the honeycombing of the lung that is sometimes associated with

the latter stages of fibrosis. The first two example in figure 1.4 both show bi-lateral bullous

Emphysema in the posterior (toward the back of the patient, so if the CT is taken with the

patient lying on their back this will appear at the bottom of the image) of the lung. The

first example also show over expansion of the lung field on the right which is often associated

with Emphysema. In the third example the Emphysema is mainly located in the anterior of

the left lung. Figure 1.5 gives three examples of Ground Glass Opacification, in the first of

these images the opacification is present uniformly across the lung field but in the remaining

examples the opacification is more localised.
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Fig. 1.3: Three examples of Fibrosis. The first image shows a patient in the early stages of
the disease, while it is more fully progressed in the remaining images.

Fig. 1.4: Three examples of Emphysema. This is distinguished by darker patches in the lung
field.

Fig. 1.5: Three examples of Ground Glass Opacification
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1.2 Machine Learning

In this section we shall give an overview of some popular and relevant methods of Machine

Learning and indicate where they have been previously applied to problems in Medical and

Bio-Informatics. We shall put particular emphasis on probabilistic techniques as they will

form the basis of this thesis.

Machine learning algorithms are techniques by which computers can mechanically learn to

do a task. It is often hoped that during this process new insights into the data or the broader

field from which the data is taken may be gained. The algorithms fall broadly into two

classes: Supervised and Unsupervised.

In supervised algorithms there is a substantial human input to the problem, for example this

could be labelling of data points. Classification algorithms are the most well know supervised

techniques.

In most practical applications of classification the data is partitioned into a training and

testing set. The test set is used to verify the accuracy of the learnt model and to avoid

over-fitting. In unsupervised algorithms the emphasis is shifted toward discovery of patterns

within the data. Clustering is the most popular unsupervised technique. Additionally there

is a semi-supervised class of algorithms concerned with reinforcement learning, none of which

we shall not mention here. Learning algorithms can also be classed as being parametric or

non-parametric. Roughly speaking non-parametric methods make no assumption about the

statistical distributions within the data.

The most simple and well known probabilistic classifier is the Naive Bayes algorithm [54].

In this method all features, that is each element of a single data point, are assumed to be

independent given a class label. Class dependent parameters are estimated using the training

data and classification of the test data is done via Bayes Rule. Despite its seemingly over

simplistic assumptions Naive Bayes is popular and has had success in many applications.

One of the most successful classifiers is the Support Vector Machine (SVM) [84]. This is a

non-parametric technique most suited to binary classification. It works by constructing an

10



1.2. MACHINE LEARNING

optimal, in the sense of maximally separating, hyperplane between the classes of points, this

hyperplane is defined by using only closest data points which are known as the support vectors.

It is in effect concentrating on modelling the boundary between classes rather than the classes

themselves. Classification of new unseen data is easy and done by computing which side of

the hyperplane the test point lies. It is attractive as an approach since with separable datasets

a unique optimal hyperplane exists, which is determined by convex quadratic programming

problem. SVM’s are generally regarded as the successor to neural networks [14]. They are

an example of a Kernel Method, thus utilising the so called Kernel trick. In its simplest form

with a linear hyperplane the quadratic programming problem is dependent only the matrix

of dot products between each data point. Through Mercer’s condition, which states that any

positive semi-definite kernel K(x, y) can be expressed as a dot product in a high-dimensional

space, simple dot products can be exchanged for more complex non-linear kernel functions.

This non-linear mapping is never explicitly calculated as we are only every interested in

distances in the new space. In the case of SVM’s this non-linearity can be thought of as

either a non-linear (curved in feature space) separating hyperplane, or alternatively a non-

linear mapping of feature space to a higher dimension in which the hyperplanes remains flat.

The form of this mapping is determined by the Kernel function, which can take on many

forms depending on both the complexity of the problem and the nature of the data, eg. RBF

Kernels for numerical data or String Kernels for textual data.

A closely related classifier to the SVM but constructed from a more Bayesian perspective is

the Bayes Point Machine (BPM) [42]. The motivation behind SVMs is easily understood by

considering hyperplanes in the vector space defined by the dimensions of the data. By working

in the dual space of this, known as version space, BPMs can be more easily visualised. In this

dual space hypotheses (that is separating hyperplanes) become points and the data points

become hyperplanes. The SVM solution is to pick the point (hypothesis) at the centre of the

largest sphere which can fit into the space defined by the hyperplanes. Hyperplanes tangent

to this sphere are the support vectors. The Bayes Point solution finds the midpoint of the

region of intersection of all the hyperplanes. This is in effect using all the data available, not

just the support vectors. As a method it has been shown to give promising results but as it

is extremely hard to compute the Bayes Point it does not have widespread usage.

The Relevance Vector Machine [80] is another Bayesian approach to classification. Like

the SVM it is a sparse kernel method. It has the advantage of providing a full predictive
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distribution, rather than point values (as in the SVM case). The Relevance Vectors are

constructed as the most informative examples in the training data, like the Bayes Point

Machine it has not received the widespread popularity that the SVM has.

There are two major classes of clustering technique: hierarchical clustering and partitional

clustering. The most common hierarchical techniques are agglomerative methods. These al-

gorithms work by firstly initialising each data point into its own cluster, and then sequentially

merging the most similar points until there is only a single cluster containing all the data.

This gives rise to a tree like structure which is often referred to as a dendrogram.

It is most common in partitional clustering to form a predetermined number of groupings in

the data. K-Means ([29]) is perhaps the most common partitional clustering technique. It

is an iterative technique which works by first randomly (or by some other means) picking

the cluster centres, each point in the data set it then assigned to the nearest cluster centre.

The centres are then recomputed and the algorithm repeats until it has converged to a stable

solution. The results can be greatly influenced by the initial assigned starting positions of the

cluster centres. An extension to K-means is fuzzy K-means [12] this is simply the case where

each point has a graded membership to each cluster rather than a binary one which is the case

with standard k-means. Both of these methods can be though of as special cases of Mixture

Models ([14]) which are generally regarded as the most mature of all clustering approaches.

Mixture models are a class of probabilistic clustering methods that attempt to model datasets

as combinations of distributions. A very recent clustering technique, which can be though

of as a generalisation of standard Mixture Models is Latent Dirichlet Allocation [15] (LDA).

We shall use the LDA framework extensively in this thesis. A more thorough discussion of

Mixture Models can be found in section 2.2.

1.2.1 Machine Learning for Microarrays

There are two distinct areas where machine learning, and in particular statistical techniques,

have been used to analyse microarray data. The first is a statistical analysis of the reliability of

the data itself. This is very important as the technology is new and produces inherently noisy

results. The second is tertiary analysis of the datasets assuming the results are accurate, this
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1.2. MACHINE LEARNING

is an area where both unsupervised and supervised machine learning have been successfully

applied. In this thesis we shall concentrate on the latter.

The development of Microarrays gave a new insight into the activity of genes. For example,

this allowed a more detailed differentiation between cells which would otherwise have looked

identical. For this reason unsupervised techniques are the most important in the analysis of

Microarrays. Perhaps the first paper to apply unsupervised techniques to Microarrays was

Eisen et al [30]. This used hierarchical agglomerative clustering to discover functional gene

groupings in Microarrays taken from yeast. These groupings of were genes were found to be

associated with cell cycles. The accompanying software has been widely used in analysis of

other data sets.

One application of microarray analysis has been in the discovery of genetically distinct sub-

types of disease [5, 25, 40, 41, 68, 77, 83, 87]. This has often been done with reference to an

external measure, for example a correspondence between disease subtype and patient survival

times in cancer. These discoveries point toward more targeted or preferential treatment of

patients based on sub type association.

Another application of supervised machine learning has been in cellular classification. This

is concerned with classification of cells, eg. samples from different patients, into a number

of pre-determined classes. A common example would be classification of healthy vs diseased,

though a clear diagnostic aid the main worth of this work likes in analysing the classifier to

determine which genes or groups of genes distinguish healthy from diseased. For example Li

et al [55] use a RVM classifier to classify normal against diseased samples on a number of

cancer data sets.

Another application has been of classification of the genes themselves. For example in [17]

the authors used an SVM to classify six functional classes of yeast gene based on expression

values over a number of experiments. This work highlighted genes which are consistently

classified well, indicating a well defined functional class and genes which are consistently

classified poorly indicating a need to investigate their functionality further.

In chapters 5 and 6 we shall investigate microarray expression data using a number of machine

learning techniques.
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1.2.2 Machine Learning in Radiology

From the earliest rule based decision support systems, [75, 43], machine learning has been ap-

plied to problems in the medical domain. Radiology has seen two main areas where machine

learning techniques have been used, the first is the classification and processing of consultants

reports [35, 79]. This work is of general interest to the Natural Language Processing (NLP)

community. One of the main motivations for automatically processing reports is in retrieval

from medical databases. The second area of interest is in the processing of data from the

CT or X-Ray images themselves. Automatic segmentation, that is separating an area of

the image that has a predefined function, is often seen as the first step in a medical image

processing problem. Numerous methods have been proposed for automatic pulmonary image

segmentation, these include model based approaches, pixel thresholding, region growing and

pattern recognition based (see [44, 33, 64] for some examples). In [64] a Gaussian mixture

model is used to partially segment MRI images of the brain. In this thesis perfect segmen-

tation is not relevant, and so we do not concentrate on this aspect of the image processing

and use a simple thresholding method to extract the lung fields. Texture classification of

lung CT images is a popular area of research ([76, 81]. The motivation for this is to provide

a accurate, reliable and, very importantly, a reproducible way of automatically labelling a

variety of diseases on a lung CT scan. In Uppaluri et al [81], the authors use a Naive Bayes

classifier to detect honeycombing, ground glass, bronchovascular, nodular, emphysema and

normal tissue types.

In chapters 3 and 4 we shall perform unsupervised learning on Radiological Data.

1.2.3 Data Fusion

In the chapters 4 and 5 of this thesis we simultaneously model two different types of data, in

chapter 3 we incorporate expert knowledge into our model and in chapter 6 we contrast the

results of modelling different, but directly compatible, datasets. These approaches can all be

viewed, on some level, as forms of Data Fusion. We shall now give a brief overview of data

fusion relevant to this thesis.
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In the paper by Segal et al [72] the authors fuse data from a number of DNA microarray

experiments into one single data set. This contains 1,975 samples taken from cancer tissues

covering 22 different tumour types. As the original experiments which generated the data are

independent there are many factors which make direct comparison of expression values hard,

and as there is variation in the actual genes whose expression is measured between studies

there are many missing values. None the less some tentative but coherent processes (which

they refer to as modules) that are common to more than one cancer type were discovered in

this study. In Sorlie et al [78] they study a number of Breast Cancer DNA microarray data

sets and find a number of common subtypes between each one. See chapter 6 for related

work. In the paper of Middendorf et al [61] they try to simultaneously model gene expression

values, expression levels of regulators and up stream transcription factor motif abundance.

This allows prediction of expression levels based on expression levels of regulators and motif

profiles. Related work exists in [73], where the authors propose a probabilistic model for

initial selection of the motifs. In chapter 5 we shall study the same yeast dataset originally

published in Gasch et al [36]. This has been further analysed in both [61] and [73]. Another

important and recent advancement in the field of Data Fusion has been in the field of Kernel

Methods. Kernel methods are, on the whole used, for classification and regression but very

occasionally are used for clustering ([11]). Kernel functions K(x, y) ([74]), are be constructed

to handle different types of data, for example, diffusion Kernels for graphical data [48] and

string kernels for sequence data. One way to perform data fusion is to construct a composite

Kernel that is a linear combination of Kernels K(x, y) =
∑

i βiKi(x, y). Thus disparate types

of data can be combined into a single Kernel. A variety of techniques have been suggested

to learn the weighting parameters βi, for example Lanckriet et al ([53]) use a semi-definite

programming approach while Girolami et al ([37]) use a hierarchical Bayesian model.
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1.4 Glossary

In this thesis we shall often refer to the term process. A process is defined by a set of

parameters for specified distributions and is equivalent to the more commonly used term

Mixture. We do no use the term mixture to distinguish the models used in this thesis from

Mixture Models. Throughout this term sample is used in two different contexts. Firstly as

indicating an element of a data set eg Sample meaning an individual patient from a cohort,

and secondly as indicating the result of sampling from a probability distribution. Here we

shall give a glossary of the variable conventions used in chapters 3, 4, 5 and 6.

Convention for indices:

• k - a process index and has limits 1 . . .K.

• d - in chapters 3 and 4 an index for CT image / Report parings.

• n - a region index for an individual CT image.

• f - a feature index for an individual CT region.

• m - in chapter 4 a word index for radiology reports.

• m - in chapter 5 a motif index under the multinomial model.

• n - in chapter 5 a motif index under the Poissonian model.

• g - a gene index.

• d - an experiment index in chapter 5.

• d - an sample (patient) index in chapter 6.

Convention for data:

• Rndf - the numerical value of feature f , in region n of CT image d.

• Wmd - the count of word w in radiology report d.
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• Mmg - the index of the m’th motif in gene g.

• Cng - the overall count for motif n in gene g.

• Edg - the expression of the the g’th gene of patient d.

Convention for Model Variables:

• Θ - the set of all model parameters.

• α - a k dimensional Dirichlet parameter.

• µ - the mean of a Gaussian distribution.

• σ2 - the variance of Gaussian distribution.

• β - in chapter 4 a multinomial of words.

• β - in chapter 5 a Poisson parameter for motif counts.

• ν - in chapter 5 a multinomial over motifs.

A standard function used in this thesis is the digamma function Ψ, defined as:

Ψ(x) =
∂ log (Γ(x))

∂x

Additionally there are many latent variables used in this thesis, these will be defined wherever

used.
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Chapter 2

Probabilistic Models

2.1 Probabilistic Modelling

In this chapter we present some of the background material and methods behind probabilistic

modelling. Some of which we shall call upon in later chapters.

2.1.1 Approaches: Bayesian and Frequentist

There has been a huge amount of literature and debate surrounding the differences between

Bayesians and Frequentists. Here we shall not address any of the philosophical differences

between the two fields of thought as this is often irrelevant to the application of the methods.

But instead we shall just present the motivation behind each approach, and demonstrate this

using observations from a simple discrete random variable. It is often the case that the only

distinction between the two approaches is made by the method in which results are presented

and the conclusions which can then be drawn.

Suppose we have a number of iid observations X1, . . . , XN each of which can take a value

1, . . . , k.

In a Frequentist approach the belief is that given enough data, in the limit N → ∞, we can
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calculate the true value of

P (X = i) =

∑

n δ(Xn, i)

N

Where δ(Xn, i) = 1 if Xn = i, and so summing this gives an overall count of the number of

observations for a particular i. The goal for a Frequentist is to calculate a interval, whose

centre is on the sample mean, in which they are confident the true value of P (X = i) lies.

Typically you would want to give a small interval and a high confidence (at least 90%) for

the estimated parameters.

In a Bayesian approach the emphasis is a step further back. Not only are the observations

taken as random variables from a distribution but the parameters governing these distri-

butions are also, themselves, random variables. The goal for the Bayesian is therefore to

estimate the distribution of P (X = i). Thus as the Bayesian has a full distribution for

the parameters, a stronger conclusion can be drawn in that they can say There is a 90%

probability that the P (X = i) lies in an interval. This approach of treating parameters as

random variables can be extended to the hyper-parameters of the distributions governing the

parameters, and so on. The Bayesian approach allows for incorporation of prior knowledge

in a very explicit way. If A is our set of knowledge about the world, this could be parameters

of a distribution, and B are some new observations then we can, in light of the new data,

update our distribtion P (A) using Bayes rule in the following way:

P (A|B) =
P (B|A)P (A)

P (B)
(2.1)

The left hand side is a distribution so must integrate (or sum in the case of discrete distri-

butions) to one, because of this it is often more convenient to consider the simpler form:

P (A|B) = P (B|A)P (A)
∑

A′ P (B|A′)P (A′)

∝ P (B|A)P (A)

(2.2)

20
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Here P (A) is the current or prior distribution for A, P (B|A) is the likelihood and P (A|B) is

the posterior. Bayes rule, in equation 2.2, can be iteratively updated each time new data is

received.

We shall now present a well known, straight forward, but demonstrative example of using

Bayes rule. The aim is to make a general point about false positives and negatives in any

kind of test.

Suppose we have a medical test for a particular type of cancer. This test is, or at least

appears to be, on the whole very accurate. It gives:

• For a patient who actually has the cancer the test will detect it, a positive result, with

a probability 0.99. That is 99% of the time.

• For a patient who is healthy the test will show a clear, negative result with probability

0.95.

In addition the particular cancer is rare, occurring in only 0.5% of the population. If we

denote P as a positive result, N as a negative result, D as actually having the disease and

D̂ as not having the disease then we have now got the following:

P (P |D) = 0.99

P (N |D̂) = 0.95

P (N |D) = 1 − 0.99 = 0.01

P (P |D̂) = 1 − 0.95 = 0.05

P (D) = 0.005

P (D̂) = 1 − 0.005 = 0.995

(2.3)

Using Bayes’ rule from equation 2.2 we can now calculate the probabilities of getting false

positives or false negatives

P (D̂|P ) =
0.05 × 0.995

0.05 × 0.995 + 0.99 × 0.005
= 0.9095 (2.4)
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P (D|N) =
0.01 × 0.005

0.01 × 0.005 + 0.95 × 0.995
= 5.2893e− 05 (2.5)

The result for a false positive P (D̂|P ) can appear to be somewhat counterintuitive. It says

even with a positive test result the chances are you are healthy. This is because the probability

of a test failing is higher that the probability of actually having the cancer. It shows that for

tests on rare diseases to be useful they must be very accurate.

2.1.2 Exchangeability

The concept of exchangeability was first formalised in a theorem by De Finetti’s in the 1930’s.

It stated that, for an infinite series of random variables

X1, X2, X3, . . .

to be exchangeable then for a finite sequence Xi1, . . . , Xin permuting the indices to give a

reordered sequence will leave the probability distribution unchanged.

2.1.3 Conjugate Priors and The Exponential Family

In a Bayesian approach to probabilistic modelling the posterior distribution is obtained by

multiplying the likelihood by a prior. Substituting B = Θ into equation 2.2 and taking A as

observed data, the posterior of the parameters Θ given the data is.

P (Θ|A) ∝ P (A|Θ)P (Θ) (2.6)

The prior distribution for the parameters P (Θ), belonging to a family P, is said to be conju-

gate to the likelihood P (A|Θ) if the posterior P (Θ|A) remains in the family P. One property
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of this is that it allows easy sampling of the posterior from well understood distributions. We

shall see later (section 2.3.7) that this is also particularly useful when performing sampling

based inference.

An important concept in probabilistic modelling is the concept of sufficiency in a statistic.

If we have number of observations x = {x1, . . . xn} taken from statistical model F with

parameters θ a function of those observations, T (x), is said to be sufficient if

P (x|T (x) = t, θ) = P (x|T (x) = t) (2.7)

That is to say, all we can know about the unknown parameters θ is captured in the statistic

T (x) and having the original x is of no gain.

The Exponential Family of distributions are the set of probability density functions that can

be written:

p(x|θ) = h(x) exp(η(θ)>T (x) −A(θ)) (2.8)

Where T (x) is the vector (or possibly a scalar) of sufficient statistics, A(θ) is the log partition

function and η(θ) is known as the canonical or natural parameter. Since

∫

p(x|θ)dx = 1

, we can write

A(θ) = log

∫

h(x) exp(η(θ)>T (x))dx (2.9)

As a simple example we will show that the Poisson distribution is a member of the exponential

family.
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p(x|θ) =
θxe−θ

x!
=

1

x!
e(x log(θ)−θ) (2.10)

So T (x) = x, A(θ) = θ, η(θ) = log(θ) and h(x) = 1
x! .

The identification of an Exponential Family class of distributions is primarily a mathematical

construction. Many useful quantities can be derived using T (x), A(θ) and η(θ). Another

property of this family of distributions is that for each member of the family there exists

a conjugate prior that is also a member of the family. This is easy to show using a simple

example.

If we draw a number of observations from a distribution in the exponential family, using the

form given in equation 2.8, the likelihood of these observations is given as:

p(x|θ) =

[

∏

i

h(xi)

]

exp(η(θ)>
∑

i

T (xi) −
∑

i

A(θ)) (2.11)

This likelihood has sufficient statistic
∑

i T (xi) and the same natural parameter η(θ). It is

then possible to construct a prior distribution

p(θ|α, β) ∝ exp(η(θ)>α− βA(θ)) (2.12)

such that the posterior,

p(θ|x, α, β) ∝ p(x|θ)p(θ|α, β)

∝ exp(η(θ)>(α+
∑

i T (xi)) − (β +N)A(θ))

(2.13)

where N =
∑

i. Thus equation 2.13 is in the same form as the prior 2.12. The parameters α

and β have been changed to α+
∑

i T (xi) and β+N respectively, but the natural parameter
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η(θ) and the log partition function A(θ) remain unchanged. Conjugate priors are useful in a

mathematical sense, but can sometimes be seen as too restrictive on the form of the prior.

An classic example of this is the Binomial distribution.

P (x = k) =

(

n

k

)

pk(1 − p)n−k

for k = 0, 1, 2, . . . , n A sensible prior would perhaps take the form of a bimodal distribution.

However the conjugate prior, a Beta distribution,

f(x) =
1

B(α, β)
xα−1(1 − x)β−1

is not expressive enough to have a bimodal form. A distribution is self-conjugate if it and

its conjugate prior come from the same class of distributions. As a well known example

of self-conjugacy, we give the Gaussian distribution as a conjugate prior for the Mean of a

Gaussian. For simplicity we take a zero mean prior.

p(µ|x, σ, τ) ∝ p(x|µ, σ)p(µ; τ)

∝ exp(−(x−µ)2

2σ2 ) exp(−µ
2

2τ2 )

(2.14)

As the posterior is a density for the parameter µ all terms not involving µ can be discarded.

Completing the square in the exponential for µ and making the substitution s2 = σ2 + τ2 we

now have

p(µ|x, σ, τ) ∝ exp(− s2

σ2τ2 (µ2 − 2xµ τ
2

s2
))

∼ N( x
1+σ2/τ2 , (

1
τ2 + 1

σ2 )−1)

(2.15)

Which is indeed a Gaussian distribution, the same family as the chosen prior for µ.
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Another useful consequence of the exponential family formalism is the ease it which you can

calculate the moments of the sufficient statistics. If the parameterisation is such that η(θ) = θ

then it is in canonical form. If we assume this form and differentiate equation 2.9 with respect

to θi (reversing the order of integration and differentiation is valid here) then we have:

∂A(θ)

∂θi
=

∫

h(x)Ti(x) exp(θ>T (x))dx
∫

h(x) exp(θ>T (x))dx
=

∫

h(x)Ti(x) exp(θ>T (x) −A(θ))dx = E [Ti(X|θ)]
(2.16)

Where X is a random variable belonging to the exponential family. This property for a

Dirichlet distribution is used in both the papers of Blei et al [15] and Rogers et al [70].

2.1.4 Jensen’s Inequality

Jensen’s inequality, introduced in [45] is of huge use in information theory and probabilistic

modelling. There are many guises in which it appears, and we shall only present the most

relevant one in this thesis. It states that under a convex function F the image of the expec-

tation of a random variable X is greater than or equal to the expectation of the image of

X.

F (E(X)) ≥ E(F (X))

As an simple example, we shall use a discrete probability distribution with density ai, such

that
∑

i ai = 1 and the convex function log. Jensen’s inequality is then written as:

log
∑

i

i× ai ≥
∑

i

log(i)ai

or alternatively the arithmetic mean is always greater than or equal to the geometric mean.
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∑

i

i× ai ≥
∏

i

iai (2.17)

It is interesting to note that Jensen’s inequality is an equality if and only if all the probability

mass lies at a single point, i.e. aj = 1 and a 6=j = 0. This is in reality rarely the case. Jensen’s

inequality is a useful technique to break the coupling between variables in a summation or

integral. This often turns an intractable calculation into a tractable one.

2.1.5 Kullback Liebler Divergence

The Kullback-Liebler divergence [49] is a measure of the similarity between two distributions.

For discrete distributions it is written:

KL(p||q) =
∑

x

p(x) log

[

p(x)

q(x)

]

(2.18)

with an integral replacing the summation for continuous distributions. This is non-symmetric,

so in general KL(p||q) 6= KL(q||p). The KL divergence can be expressed in terms of entropies

KL(p||q) =
∑

x

p(x) log p(x) −
∑

x

p(x) log q(x) = −H(p) +H(p, q) (2.19)

Where H(p, q) is the cross entropy between p and q and H(p) the entropy of p. It is important

to note that KL(p||q) = 0 iff p = q.

2.1.6 Maximum Likelihood and Maximum a Posteriori

Maximum-Likelihood is a classical approach to parameter estimation. Under the frequentest

view parameters are taken as having fixed values. Contrastingly in a Bayesian setting pa-
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1=121 2=125 3=123 4=114 5=117 6=127 7=126
8=117 9=124 10=129 11=136 12=128 13=102 14=115
15=113 16=107 17=117 18=124 19=127 20=96 21=107
22=118 23=137 24=115 25=143 26=122 27=128 28=127
29=122 30=127 31=133 32=130 33=130 34=116 35=127
36=116 37=114 38=154 39=111 40=133 41=101 42=118
43=145 44=144 45=128 46=121 47=140 48=135 49=118

Tab. 2.1: National Lottery Data

rameters are treated as random variables as so require prior distributions, this formulation

gives rise to the Maximum a Posteriori approach to parameter estimation.

The Maximum-Likelihood solution is taken as the set of parameters, ΘMAP , that maximises

the likelihood of the data given the model parameters, P (Data|Θ) (here Θ represents the

model parameters). The Maximum a Posteriori solution is taken to be the set of parameters

that maximises the posterior, P (Θ|Data), of the parameters given the data. The MAP

solution is related to the ML solution though Bayes Rule.

P (Θ|Data) ∝ P (Data|Θ)P (Θ) (2.20)

Thus the MAP solution enables us to incorporate prior knowledge about the distribution

of the parameters values. As MAP solutions are generally derived algebraically it is not as

essential to use conjugate priors than would be the case in sampling based inference.

A simple example is taken from the UK National Lottery [4]. Table 2.1 shows the frequency

with which the numbers have appeared from the first draw up to August 6th 2005.

We assume the frequency, xi, with which a number appears forms a multinomial distribution

with parameters θi. The likelihood of the the data given the parameters is therefore.

L(Data|Θ) =
49!

∏49
i=1 xi

∏

i

θxi

i
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The log-likelihood is

logL(Data|Θ) = log(49!) −
49
∑

i=1

log(xi!) +

49
∑

i=1

xi log(θi) (2.21)

To maximise the log-likelihood, and hence likelihood, we differentiate equation 2.21 with

respect to the model parameter θj with the additional constraint that
∑

i θi = 1.

∂

∂θj

(

logL(Data|Θ) + λ(
∑

i

θi − 1)

)

=
xj
θj

+ λ) (2.22)

Where λ is a Lagrange multiplier. Thus:

θMLE
j =

xj
∑

i xi

The data above will give θMLE
1 = 0.0200, θMLE

20 = 0.0159 and θMLE
38 = 0.0255. Contrast

this with the MAP solution, the conjugate prior of a multinomial distribution is the Dirichlet

distribution:

D(θ; c) =
Γ(
∑

i ci)
∏

i Γ(ci)

∏

i

θci−1
i (2.23)

In MAP estimation the use of a conjugate distribution is not essential, but as it is often

convenient to do so in more advanced Monte Carlo methods, to remain consistent we shall

use it here. The ci parameters in the Dirichlet density 2.23 are interpreted as a prior count,

a prior belief that ball i will have been drawn ci times. If we assume the balls are unbiased,

over all 1006 draws of the lottery each ball would expect to have appeared a little over 123

times. Thus we can set ci = 123 for all i. Note, the Dirichlet distribution does not require

an integer parameter but we shall use one here for convenience.
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Using equation 2.1.6 the log-posterior becomes:

logL(Θ|Data) ∝ log(49!) −
49
∑

i=1

log(xi!) +

49
∑

i=1

xi log(θi) +

49
∑

i=1

(123 − 1) log(θi) (2.24)

and hence the MAP solution is:

θMAP
j =

xj + 122
∑

i xi + 122

The data above will give θMAP
1 = 0.0202, θMAP

20 = 0.0182 and θMAP
38 = 0.0230. These

multinomial parameters are now close to the unbiased value of 0.0204. It may appear that

this is because we have in fact cheated as we in a sense knew the answer we were looking for

before we started. But the use of priors over the parameters is important in a number of ways.

It is rarely the case that we know nothing about the problem in hand, this knowledge can

be incorporated into the prior. A common consequence of prior distributions is a smoothing

of model parameters, they can also be used to avoid over and under-fitting. Finally without

prior distributions on the model parameters a method cannot claim to be Bayesian, as the

fundamental Bayesian assumption is that model parameters are not fixed but are drawn from

a distribution.

2.2 Graphical Models

In this section we shall first introduce the idea of conditional independence, and how this is

related to the joint distribution of a number of variables. If two variables are independent

then simply P (A,B) = P (A)P (B), that is the joint distribution of two variables A and B

can be decomposed into separate distributions for A and B. This means for independent

variables, A and B, conditioning one variable on a particular value of the other has no effect,

hence P (A|B) = P (A). Intuitively speaking, knowing the value of B does not alter our belief

about the values of A. Conditional independence is an extension of this. If two random
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variables A and B are conditionally independent given a random variable Z, then

P (A,B|Z) = P (A|Z)P (B|Z)

similarly

P (A|B,Z) = P (A|Z)

Intuitively this is saying that once we know the value of Z then knowing B adds nothing

more to our belief about the values of A. It is an important point to make that conditional

independence between A and B given Z does not imply that P (A|B) = P (A). In probabilistic

modelling we are often interested in modelling the joint distribution P (X1, . . . , Xn) of a set

of random variables {X1, . . .Xn}. If we know the conditional dependencies between the

variables Xi then we can write the joint distribution in a factored form which will simplify

any computations.

Graphical Models are a way of representing the conditional dependencies between random

variables in a probabilistic model. In all the graphical models we give in this thesis the random

variables are represented by nodes with conditional dependencies depicted as arcs between

these nodes. Circular nodes indicate that we assume a full distribution for this variable, while

square nodes indicate a point estimate. Shaded nodes represent an observed variable while

unshaded nodes indicate the need to perform inference for that node. Additionally frames

will denote exchangeability in a sequence of random variables.

Thus the simplest non trivial (the most trivial being a single variable) graphical model possible

would be that given in figure 2.1, which has the corresponding equation 2.25. An example

of a model with exchangeability is given by figure 2.2 and equation 2.26. Figure 2.3 gives a

simple practical graphical model, this is model for calculating the average (the mean here is

taken as a point value) of N observed variables Xn. Figure 2.4 shows how graphical models

can be used to express the conditional independence between variables and how this then

related the joint distribution to a factorised form.
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Fig. 2.1: Graphical Model for equation 2.25

� ���

�

Fig. 2.2: Graphical Model for equation 2.26

P (X,Z) = P (X|Z)P (Z) (2.25)

P (X,Z) =
N
∏

n

P (Z)P (Xn|Z) (2.26)

Bayesian networks are examples of graphical models, they are directed acyclic graphs (DAGs).

In these the conditional dependencies indicated by the graph structure show how to factorise

the joint probability distribution over all the variables into a simpler form. This allows

tractable calculations of conditional distributions.

� ��	




Fig. 2.3: Graphical Model for estimating the mean of a variable from a set of observed values
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Fig. 2.4: This graphical model demonstrates the relationship between the joint den-
sity and its factorised form. In particular it draws attention to the the condi-
tional independence between Z and X1 and X2. Namely P (Z,X1, X2, X3, X4, X5) =
P (Z|X3, X4, X5)P (X3|X1)P (X4|X2)P (X1)P (X2)P (X5)

2.2.1 Mixture Models

Here we shall introduce the graphical models for a Gaussian Mixture model and for the Latent

Dirichlet Allocation model ([15]).

Gaussian Mixture

Let us define our data set as a number of observations Xd (d is an index for observations),

with each observation having a number of features Xdf (f is an index for features). The

assumption behind all mixture models is that there is no single distribution (by that we

mean set of parameters rather than class of distribution) that generated, X·f , a particular

feature across the whole data set, rather a set of distributions. We shall index this set

k = 1, . . . ,K. The proportion of observations that were generated by each of K parameter

choices is known as the mixing parameter.

The graphical model for a Gaussian Mixture is given in figure 2.5. The likelihood of generating

a sequence of samples, X1, . . . ,XD, from this model is written is equation 2.27. In a Gaussian

Mixture model the mixture is selected once for each observation, that is the parameters

defining each feature for that observation are all conditioned on the same k.
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Fig. 2.5: Graphical Model for a Gaussian Mixture

[

D
∏

d

∑

k

P (Zd = k|π)(Xd|µk, σ2
k)

]

P (µ|τ)P (σ2|s)P (π|α) (2.27)

Where for multidimensional data with F features P (Xd) =
∏

f P (Xdf )

It is sometimes useful to write the generative process in words, here a ∼ P (a|b) means

we sample a from a distribution with parameters b and a boldface a indicates a vector of

parameters was sampled:

Sample π ∼ P (π|α)
Sample µ ∼ P (µ|τ)
Sample σ2 ∼ P (σ2|s)
while d ≤ D do

Sample Zdf ∼Mult(π)
while f ≤ F do

Sample Xdf ∼ N (µZdf
, σ2

Zdf
)

end
end

Algorithm 1: Generative Process for a Gaussian Mixture. This is a fully Bayesian
treatment of a Gaussian Mixture as all model parameters are themselves random variables
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Fig. 2.6: Graphical Model for Latent Process Decomposition

The Latent Dirichlet Allocation [15] model is similar to that of a mixture model. It was first

introduced as a generative model for textual data in which there was more than one distinct

theme running through the text. Because of this it is often referred to as an aspect mode. It

offers more flexibility than a standard mixture model. For each observation a multinomial

across mixtures is generated by sampling a Dirichlet distribution. Then for each feature a

mixture is sampled from this multinomial. Thus for a given observation the features Xdf

need not have been generated by the same mixture. In Rogers et al, [70], they applied LDA

to continuous data but substituted a Gaussian distribution for the original Multinomial. The

likelihood of the resulting Latent Process Decomposition (LPD) model is given in equation

2.28, with corresponding graphical model 2.6.

∏

d





∏

f

∑

k

P (Zdf = k|θd)P (Xdf |µZdf , σ
2
Zdf

)



P (θd|α) (2.28)

Latent Process Decomposition

The generative process for LPD is given as.
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while d ≤ D do
Sample θ ∼ Dirichlet(α)
while f ≤ F do

Sample Zdf ∼Mult(θ)
Sample Xdf ∼ N (µZdf

, σ2
Zdf

)

end
end

Algorithm 2: Generative Process for a Latent Process Decomposition. In this example
the construction is not a fully Bayesian treatment of LPD. The model parameters are not
drawn from a distribution and so are not random variables.

2.2.2 Biomedical Relevance of Mixture Models

Here we shall justify the application of decomposable models, such as the Gaussian Mix-

ture and Latent Process Decomposition, to biomedical data. We shall also show the

differences between the Gaussian Mixture and Latent Process Decomposition models.

Data sets containing more than one group of individuals, or more than one distinct class

elements occur frequently in the biomedical sciences. For example, figure 2.7 is a histogram

of pixel intensity for a single CT scan. It is clear that there are a number of distinct groups

present in the data appearing at different positions on the spectrum of intensity. Additionally

in this particular example, each of the distinct groups seems to have a spread and overall

frequency (compared to the other groupings) associate with it. The figure 2.8 is a histogram

of the gene expression for a single gene across a number of patients. Again, it is clear from

this there appear to be a number of distinct groups in the data.

If we assume normally distributed data (this is generally a valid assumption on data that

occurs naturally) and there existed a single group the histogram would look something like

that given in figure 2.9. If we extend this to a situation where there are three grouping in the

data, each with a distinct mean. The histogram of this new dataset would look something

figure 2.10, additionally figure 2.11 shows the separate components making up the dataset.

Although this is just a visual example we can already see that the mixture distributions given

figures 2.8 and 2.10 are beginning to look very similar, it is easy to accept that with a suitable

choice of parameters a mixture histogram could be generated to look like the CT data given
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Fig. 2.7: A histogram of pixel intensity for a single CT scan
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Fig. 2.8: A histogram of gene expression for a single gene
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Fig. 2.9: A histogram of samples from a zero mean unit variance Gaussian.
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Fig. 2.10: A histogram of a data set containing samples from three Gaussian distributions.
Each has unit variance, with means -5, 0 and 3.

in figure 2.7.

In the situation we have demonstrated above a Gaussian Mixture is a good way of modelling

the data from figures 2.7 and 2.8. In the graphical model given in figure 2.5 we have three

model parameters. These are the means, µ which dictate the centres of the different groupings,

the variance σ2 which dictate the spread of each group and the mixing parameter π which

dictates the overall frequency of each group.

So far we have only considered simple examples, in figure 2.7 we have a single ct scan from

a single patient and in figure 2.8 we have a single gene from a cohort of patients. In a more
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Fig. 2.11: A histogram of the same data give in figure 2.10. This shows the separate compo-
nents that make up the whole dataset.

realistic situation we would have multiple scans from more than one patient and a number

of genes taken across the whole patient cohort.

In the case of gene expression, each sample is a patient with a number of expression Ed =

{Ed1, . . . , EdG}. We can easily extend a Gaussian mixture to a multidimensional case. The

model parameters µ and σ2 are now extended to have a second dimension indexed by gene g,

in the case where we assume an isotropic covariance (this is the assumption of uncorrelated

variables and unrealistic in general), this is in effect modelling each gene in a similar way to

that as demonstrated by figure 2.8. However the mixing parameter π remains of dimension

1×K where k the number of mixtures chosen. Because of this, the assumption is for a single

patient that a single value for K is chosen and this is then used across all that patients genes.

Each gene still has a distinct set of means associated with it {µg1, . . . , µgK} for each choice

of k, but for each patient in the group all the genes are tied to the particular chosen value of

parameter k, {µ1k, . . . , µGk}. This is quite restrictive, it does allow different groups within

the dataset but it also assumes that for all patients within a group any given gene across

the group is distributed according to a single Gaussian. Figure 2.12 is a simple schematic

representation of this idea. In this example there are 3 possible mixture choice, red, green and

blue represented by a bag of balls. With p(Green) = 0.6 and p(Red) = p(Blue) = 0.2. For

each patient, represented by a column, a single ball is chosen at random - this corresponds

to the value of k. The parameters for each gene µgk and σgk are then used to generate each

gene expression. Compare this to the schematic representation of the LPD model, give in
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Fig. 2.12: Generative Process of a Mixture Model. The box of spheres represents a multino-
mial distribution and there is a single column for each patient with 8 genes each represented
by a single coloured box.

D

Fig. 2.13: Generative Process of a an LPD mixture model. The D represents a Dirichlet dis-
tribution. Each box of spheres represents a multinomial distribution specific to each patient.
Again there is a single column for each patient with 8 genes. Note that although the graphic
is the same each box of spheres represents a separate draw from a Dirichlet distribution.

figure 2.13. In this model for each patient a multinomial (represented again by the bag of

balls) is drawn from a Dirichlet distribution (represented by D in figure 2.13), the process k

is then drawn from this specific multinomial for each gene. Hence it is now possible to have

a mixture of processes in an individual patient (this is seen as a mixture of coloured boxes in

a specific column). The gene expressions are still tied together as their processes are drawn

from the same multinomial, and the multinomial’s are tied as they are drawn from the same

Dirichlet.

In this thesis the motivation for using LPD based mixture models on gene expression data

is that we weakly associate a process (that is a distinct set of parameter values) with a

distinct biological process. The connection we make is that there may exist a finite number
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of distinct underlying genetic effects (the total number of processes k) , these directly affect

the expression for a group of genes. Each patient in the cohort is affected by these effects

in varying degrees, this is analogous to the patient specific multinomial. In the graphical

model for LPD given in 2.6 there are two levels exchangeability, indexed by D and F . With

reference to gene expression for a number of patients over a number of genes, exchangeability

in D indicates that we allow any permutation of patients without any impact. Similarly

exchangeability in F indicates we can have a global permutation of genes without any effect,

indeed in the context of gene expression a specific ordering of the genes is meaningless.

Although only a great simplification of the biology the LPD model may provide an interesting

picture of gene expression.

Turning out attention to CT images, let us first restrict ourselves to the case when we have

just a single image for each patient and also restrict ourselves to the case where we are only

considering the intensity of the pixel (later we shall use more advances image features). Recall

that figure 2.7 is a histogram of pixel intensities for a single CT image from a single patient.

It is clear from this that there exist distinct groupings within a single image. So for each

patient we have a mixture over distinct Gaussians. In the same way we weakly associated

different mixture components with biological processes for gene expression we attempt to

associate different mixture components with distinct tissue types. Thus, 2.7 can be viewed

as a decomposition of a patient into distinct image appearances which are closely associated

with normal tissue and different disease types. Indeed, this is a very valid assumption as

Emphysema is sometimes defined purely in terms of its pixel intensity. To model the CT

data using a standard mixture of Gaussians, each image would only be allowed to contain a

single Gaussian. This is obviously far too restrictive, but in the case of an LDA based mixture

model each patient (that is each image) is a distinct mixture over all the Gaussians available.

The proportion of each corresponding to the proportion of each tissue type present. Once

again this is a simplification of the underlying biology, but it is certainly expressive enough

to allow an interesting analysis of the CT data.
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2.3 Methods of Inference

2.3.1 Expectation Maximisation

One very important development in the field of probabilistic inference was the Expectation

Maximisation algorithm [26]; a good introduction is given here [13]. The main idea behind the

EM algorithm is to decompose likelihoods in terms of Observed Data and Missing Data. Using

this construction we can alternate between approximating the missing data and optimising

the model parameters. We shall now give a brief overview of the EM algorithm.

Overview of traditional EM

Let us start by denoting Observed data by X and Missing data by Z. X and Z both denote

sets of variables. As examples: Z could be the unknown class label in a clustering algorithm

or a missing gene expression from some microarray data, X could be a vector of features for

a given sample. Let θ denote the parameters of the model. As EM is an iterative procedure

denote θn to be an estimate of θ after n iterations.

We denote

p(X|θ) (2.29)

as the incomplete data likelihood and

p(X,Z|θ) (2.30)

as the completed data likelihood.

Since

p(Z,X|θn) = p(X|θn)P (Z|X, θn)
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We can then write the incomplete data likelihood in terms of a completed data likelihood and

a marginal probability of the missing data.

p(X|θn) =
p(Z,X|θn)
P (Z|X, θn)

(2.31)

For simplicity we shall work with log-likelihoods. As log is monotonically increasing all derived

inequalities will hold for non-logged functions. Expanding the incomplete data log-likelihood

and utilising equation (2.31).

log(p(X|θn)) =
∑

Z P (Z|X, θn) log(p(X|θn))

=
∑

Z P (Z|X, θn) log
[

p(Z,X|θn)
P (Z|X,θn)

]

=
∑

Z P (Z|X, θn) log p(Z,X|θn) −
∑

Z P (Z|X, θn) logP (Z|X, θn)

= EZ [log p(Z,X|θn)|X, θn] − EZ [log p(Z|X, θn)|X, θn]

= Q(θn|θn) +R(θn|θn)

(2.32)

We have decomposed the incomplete data log-likelihood into two terms. The first of these, Q,

is the expectation of the completed data log-likelihood with respect to current estimate of the

missing data. The second term, R, is the entropy of the current estimate of the missing data.

The use of Q to denote this expectation is taken from [26]. Note we have simply expressed

the incomplete data log-likelihood in terms of the KL divergence given in equation 2.19, with

p = P (Z|X, θn) and q = p(Z,X|θn). In the standard convention we define:

Q(θ|θn) ≡ EZ [log p(Z,X|θ)|X, θn] (2.33)
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and

R(θ|θn) ≡ −EZ [log p(Z|X, θ)|X, θn] (2.34)

The basic idea of the EM algorithm is to construct an iterative scheme which, at each iteration,

increases the incomplete data likelihood. The following is a very standard approach for proof

of convergence of EM.

log(p(X|θn)) = log [
∑

Z p(Z,X|θn)]

= log
[

∑

Z P (Z|X, θn) p(Z,X|θn)
P (Z|X,θn)

]

= log
[

EZ

[

p(Z,X|θn)
P (Z|X,θn) |X, θn

]]

(2.35)

This is the expectation of p(Z,X|θn)
P (Z|X,θn) , with respect to the missing data Z, given the observed

data X and the estimate of the parameters after n iterations θn. Using the form Jensen’s

inequality give in equation 2.17:

log
[

EZ

[

p(Z,X|θn)
P (Z|X,θn) |X, θn

]]

≥ EZ

[

log
[

p(Z,X|θn)
P (Z|X,θn) |X, θn

]]

=
∑

Z P (Z|X, θn)
[

log p(Z,X|θn)
P (Z|X,θn)

]

=
∑

Z P (Z|X, θn) [log p(Z,X|θn) − logP (Z|X, θn)]

= EZ [log p(Z,X|θ)|X, θn] − EZ [log p(Z|X, θ)|X, θn]

= Q(θ|θn) +R(θ|θn)

(2.36)
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Thus we have established the following inequality.

log(p(X|θn)) ≥ Q(θ|θn) +R(θ|θn)

We can find a new parameter estimate θn+1 such that θn+1 = argmaxθQ(θ|θn), hence

Q(θn+1|θn) ≥ Q(θn|θn) (2.37)

and adding R(θn|θn) to equation 2.37 and using equation 2.32

L(X|θn+1) ≥ Q(θn+1|θn) +R(θn|θn)

≥ Q(θn|θn) +R(θn|θn)

= L(X|θn+1)

(2.38)

hence

L(X|θn+1) ≥ L(X|θn)

So for each selection of θn+1 an increase inQ corresponds to an increase in the true, incomplete

data, likelihood. The EM algorithm can be summarised as follows:

• E-Step: Calculate Q(θ|θn)

• M-Step: Find θn+1 = argmaxθQ(θ|θn)
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Variants on EM

One of the great limitations of the EM algorithm is in its convergence properties. The EM

algorithm will only converge to local minima, in fact it will only converge to a point estimate

of the mode of a bound on the posterior. This in itself is often sufficient to give a good model

for some data, but compared for example to Monte Carlo techniques (see section 2.3.7) where

the full posterior is obtained a point estimate is inferior. This however is balanced by ease

of implementation, and particularly speed of computation. The second problem that is well

known is that the EM algorithm has a slow convergence rate. This can be due to over fitting

of the latent states (E-Step) and is in part remedied by a series of incomplete E and M steps.

A full discussion and application to Mixture models is given in [23].

2.3.2 Variational Inference

In many ways variational inference is a generalisation of the EM algorithm. An excellent

and thorough introduction and overview to their usage can be found in [85]. Variational

methods are used when exact inference within a graphical model is not possible. Via the

introduction of variational distributions a bound on original probabilities is constructed. The

motivation being that inference within this bound is often easy to perform. There are two

distinct approaches to Variational Inference. The first is most similar in motivation to the

standard EM algorithm and provides an iterative procedure to generate ML or MAP point

estimates.

As a simple example we shall show how to perform maximum likelihood inference in a simple

mixture model. Suppose we have a mixture model with logged likelihood:

logP (X|Θ) = log
∑

k

πkP (X|Θ, k) (2.39)

We shall introduce the discrete variational distribution γ.
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logP (X|Θ) = log
∑

k πk
γk

γk
P (X|Θ, k)

≥∑k γk log πk
P (X|Θ,k)

γk

(2.40)

The bound is introduced by using Jensen’s inequality from equation 2.17 as the summation

over k is actually an expectation over the variational distribution. Equation 2.40 is now a

tractable bound. This bounded likelihood can now be maximised by iteratively updating the

maximum likelihood solution of the model parameters and the maximum likelihood solution

of the variational distribution until convergence. As is the case with the EM algorithm,

variational inference will give a point estimate of the posterior distribution.

In keeping with the Bayesian methodology the second approach to Variational Inference

attempts to explain away any latent uncertainty in our model by integrating out all hidden

nodes. The is formulated by constructing a bound based on the negative free energy of the

system and maximising this. Among the first authors to adopt this approach was Attias in

[7]. Here we shall give a general derivation of the Variational Bayes algorithm and a example

of it in application to Latent Process Decomposition.

One advantage of a Variational Bayesian approach to parameter estimation over an EM

algorithm is that model comparison can be performed more easily. In an EM algorithm a

cross validation is required. This involves retaining a certain percentage of the data and then

estimating the parameters on the remaining data. The likelihood of the left out data is then

calculated as a score for the accuracy of the model. Over-fitted models are penalised as the

score is based on the retained data not used in parameter estimation. In the case of models

containing Mixtures of distributions a cross validation can be performed for varying numbers

of mixtures and then the scores for each compared to give a best fit model. One criticism of

this approach is that it is not strictly correct to directly the likelihoods of different models.

Integrating the likelihood function of some data, given the model parameters and the number

of mixtures k, with respect to the parameters will give one.

p(D|K) =

∫

L(D|Θ,K)dΘ = 1
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Fig. 2.14: Graphical Model for a fully Bayesian Latent Process Decomposition

Therefore, parameter rich models will be given a higher likelihood than others resulting in

over fitting in a model sense when estimating K through likelihood comparison. Conversely

in a Variational Bayesian all model parameters are integrated out so it is possible to give a

lower bound on p(D|K), and hence direct model comparison is valid.

2.3.3 Variational Bayesian Inference

Here we present the general methodology for Variational Bayesian Inference (VB). VB seeks

to find a lower bound on the evidence p(Data) which is in a tractable form to be maximised.

Approximations are made to the posterior distributions of all hidden and model variables

so that they can be marginalised (integrated out). At each iteration of VB it is the hyper-

parameters, rather than parameters, that are updated. Thus compared to the EM algorithm,

or a variational approach that utilises Jensen’s inequality the emphasis is shifted a step

up-wards.

In the derivation there are two hidden nodes Z and θ and a set of parameters Θ. The reason

for this explicit selection of the variables is they correspond the the variables in the fully

Bayesian LPD model given in figure 2.14 which we shall use as an example.

In summary, the variables in our model are:
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• Edg Expression for gene.

• θ,Z Hidden variables

• Θ model parameters (note these are not hyper parameters, but the distributions gov-

erned by the hyper-parameters)

• All square boxed variables are hyper-parameters for which we estimate a point value.

2.3.4 General VB

The evidence of some data p(E) can be written as a ratio of the joint distribution (with respect

to some variables) p(E,Θ,θ,Z) and the posterior distribution of these variables given the

data p(Θ,θ,Z|E).

p(E) =
p(E,Θ,θ,Z)

p(Θ,θ,Z|E)
(2.41)

The log of this is written as:

log p(E) = log p(E,Θ,θ,Z) − log p(Θ,θ,Z|E) (2.42)

Let us introduce an approximation to the posterior distributions of all model and hidden

variables q(Θ,θ,Z|E). If we take expectations of expression 2.42 with respect to this ap-

proximate posterior q(Θ,θ,Z|E), the left hand side remains unchanged as this is independent

of Θ, θ and Z.

log p(E) =

∫

q(Θ,θ,Z|E) log p(E,Θ,θ,Z)dΘdθdZ−
∫

q(Θ,θ,Z|E) log p(Θ,θ,Z|E)dΘdθdZ

Multiplying p(E,Θ,θ,Z) top and bottom by q(Θ,θ,Z|E) and separating the terms we can
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now write

log p(E) = F (Θ) +KL(q(Θ,θ,Z|E)||p(Θ,θ,Z|E))

where

F (Θ) =

∫

q(Θ,θ,Z|E) log
p(E,Θ,θ,Z)

q(Θ,θ,Z|E)
dΘdθdZ

As the KL divergence is strictly greater than zero, we can now say that

log p(E) ≥ F (Θ)

Equality holds when KL = 0, this is true when the approximate posterior q and true posterior

p coincide, the case when our approximation becomes exact. The idea behind a Variational

Bayes approach is to maximise the evidence by maximising F (Θ).

We shall now make an important assumption about the posterior. We assume that it factorises

into separate terms, such that q(Θ,θ,Z|E) = q(Θ)q(θ)q(Z) where the dependence on E is

implied.

By writing p(E,Θ,θ,Z) = p(E,θ,Z|Θ)p(Θ) we can now expand F (Θ) as

F (Θ) =

∫

q(Θ)q(θ)q(Z) log
p(E,θ,Z|Θ)p(Θ)

q(Θ)q(θ)q(Z)
dΘdθdZ

Thus by expanding and integrating out q(θ) and q(Z)

F (Θ) =

∫

q(Θ)q(θ)q(Z) log
p(E,θ,Z|Θ)

q(θ)q(Z)
dΘdθdZ −KL(q(Θ)||p(Θ)) (2.43)
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In equation 2.43 the first term is an averaged likelihood and the second term −KL(q(Θ)||p(Θ))

is a measure of the distance between approximate posterior and prior over parameters, as this

term increases with the number of parameters it can be seen as a penalising term for over

complex models. Indeed it has been shown that in certain situations this reduces to the

Bayesian information criteria (BIC) and the Minimum Description Length (MDL) (see [7] for

further details).

To maximise F (Θ) in equation 2.43 we take zeroed gradients (functional derivatives in this

case) with respect to the approximate posteriors q(Θ), q(θ) and q(Z).

δF (Θ)

δq(θ)
=

∫

q(Θ)q(Z) log
p(E,θ,Z|Θ)

q(θ)q(Z)
dΘdZ −

∫

q(Θ)q(θ)q(Z)

q(θ)
dΘdZ = 0

∫

q(Θ)q(Z) log p(E,θ,Z|Θ)dΘdZ−1−log q(θ)

∫

q(Θ)q(Z)dΘdZ−
∫

q(Θ)q(Z) log q(Z)dΘdZ = 0

As the densities q(. . . ) integrate to one we can write

q(θ) ∝ exp

[∫

q(Θ)q(Z) log p(E,θ,Z|Θ)dΘdZ

]

(2.44)

Analogously

q(Z) ∝ exp

[∫

q(Θ)q(θ) log p(E,θ,Z|Θ)dΘdθ

]

(2.45)

For any of the model parameters,

δF (Θ)

δq(Θ)
=

∫

q(θ)q(Z) log
p(E,θ,Z|Θ)

q(θ)q(Z)
dθdZ − log

p(Θ)

q(Θ)
− 1 = 0
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so

q(Θ) ∝ exp

[∫

q(θ)q(Z) log p(E,θ,Z|Θ)dθdZ

]

p(Θ) (2.46)

Equations 2.44 to 2.46 give the approximate posterior distributions for the latent variables

and model parameters. They can be interpreted as the posterior taking the form of the

exponential of the averaged log likelihood over all remaining variables. Thus all uncertainty

is integrated away. The posterior forms of q(Θ), q(θ) and q(Z) are determined directly

from the optimisation via equations 2.44 to 2.46. In the case of model parameters, the

prior distributions in 2.46 are chosen as conjugate to the derived exponentials so that the

parametric form for q(Θ) remains the same.

Having derived the general form of the posterior distributions in a VB approach we shall use

the LPD model given in figure 2.14 as an example.

2.3.5 Application to LPD

The derivation acts as an extension to that given for mixture models in [7]. As the prior

distributions are chosen to maintain functional form there is a certain amount of hindsight

used in the presentation.

The joint likelihood of the observed data E and the latent variables θ,Z, for the model given

graphically in figure 2.14, is written.

P (E,θ,Z|Θ) =
∏

d

p(θd|α)
∏

g

p(Zdg|θd)p(Edg|µg, βg, Zdg|θd) (2.47)

By extending Zdg to a k dimensional vector of zeros with a 1 in the location of the original

Zdg this can be re-expressed as
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P (E,θ,Z|Θ) =
∏

d

p(θd|α)
∏

g,k

[p(Zdg,k|θd)p(Edg|µg, βg, Zdg,k)]Zdg,k

Thus the log joint likelihood is written in equation 2.48.

log p(E,θ,Z|Θ) =
∑

d,k(αk − 1) log θdk

+
∑

d,g,k Zdg,k
[

log θdk − 0.5βgk(Edg − µgk)
2 + 0.5 log βgk

]
(2.48)

We endow the model parameters with prior distributions, and give the form of the distribu-

tions for the latent variables as

• p(α) =
∏

k p(αk) ∼
∏

k Γ(αk; t0, s0)

• p(µ) ∼∏gkN (µgk;m0, v0)

• p(β) ∼∏gk Γ(βgk; a0, b0)

• p(Z|θ) ∼∏dgk θ
Zdg,k

d,k

• p(θ|α) =
∏

d p(θd|α) ∼ Dirichlet(α)

We need to take expectations of the log likelihood given in equation 2.48 with respect to the

approximate posterior distributions q(θ), q(α), q(µ) and q(β). The approximate posteriors

are assumed to factorise and have the form

• q(θ) =
∏

d q(θd) ∼
∏

dDirichlet(α̃d)

• q(α) =
∏

k q(αk) ∼
∏

k Γ(tk, sk)

• q(µ) ∼∏gkN (m̃gk, ṽgk)

• q(β) ∼∏gk Γ(ãgk, b̃gk)

• q(Z) ∼∏dgk r
Zdg,k

dg,k
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Leaving out the parameter of interest and taking expectations with respect the the posterior

distributions q() of all the remaining parameters we have equations 2.49 to 2.53.

< log p(E,θ,Z|Θ) >θ,µ,β,α=
∑

d,g,k Zdg,k [< log θdk >

−0.5 < βgk > (E2
dg − 2Edg < µgk > + < µ2

gk >)

+0.5 < log βgk >]

(2.49)

< log p(E,θ,Z|Θ) >Z,µ,β,α =
∑

d,k(< αk > −1) log θdk +
∑

d,g,k < Zdg,k > log θdk

=
∑

d,k(< αk > −1 +
∑

g < Zdg,k >) log θdk
(2.50)

< log p(E,θ,Z|µ) >θ,Z,β,α= −0.5
∑

d,g,k

< Zdg,k >< βgk > (µ2
gk − 2Edgµgk) (2.51)

< log p(E,θ,Z|β) >θ,Z,µ,α=
∑

d,g,k < Zdg,k >
[

−0.5βgk(< µ2
gk > −2Edg < µgk > +E2

dg)

+0.5 log βgk]

(2.52)

< log p(E,θ,Z|α) >θ,Z,µ,β=
∑

d,k

(αk − 1) < log θdk > (2.53)

These expectations take the form of simply the mean E(X)), second moments E(X2) or

E(log(X)) and can be evaluated analytically in a standard way. Below we give their values

with no working (see [66] for more detail).

• < log θdk >q(θ)= Ψ(α̃dk) − Ψ(
∑

k′ α̃dk′) = log θ̃dk
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• < Zdg,k >q(Z)= rdg,k

• < βgk >q(β)= ãgk b̃gk

• < log βgk >q(β)= Ψ(ãgk) + log b̃gk

• < µ2
gk >q(µ)= m̃2

gk + 1/ṽgk

• < µgk >q(µ)= m̃gk

• < αk >q(α)= t̃gks̃gk

For the latent variable Z, combining equations 2.49 and 2.45 we have

q(Z) =
∏

dgk

r
Zdg,k

d,k = Mult(Z; rdg,k)

rdg,k ∝ θ̃d,k exp
[

−0.5ãgk b̃gk(E
2
dg − 2Edgm̃gk + m̃2

gk + 1/ṽgk) + 0.5(Ψ(ãgk) + log b̃gk)
]

(2.54)

For the latent variable θ, combining equations 2.50 and 2.44 we have

q(θ) ∝
∏

dk

θ
t0s0−1+

∑

g rdg,k

d,k = Dirichlet(θ|t0s0 +
∑

g

rdg,k)

For model parameters, recall from equation 2.46 q(Θ) ∝ exp(< p(E,θ,Z|Θ) >)p(Θ). Thus

for the posterior distribution of the means q(µ):

q(µ) ∝
∏

gk

N (µgk;

∑

d rdg,kEdg
∑

d rdg,k
, ãgk b̃gk

∑

d

rdg,k) ×N (µgk;m0, v0)

Combining two Gaussians in the usual way
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q(µ) ∝
∏

gk

N (µgk; m̃gk, ṽgk)

Where

ṽgk = v0 + ãgk b̃gk
∑

d

rdg,k

m̃gk =
1

vgk

[

v0m0 + ãgk b̃gk
∑

d

rdg,kEdg

]

For the posterior distribution of the Dirichlet parameter q(β)

p(β) ∝
∏

gk

βa0−1
gk exp(−βgk

b0
)

q(β) ∝
∏

gk

Γ(β; 0.5
∑

d

rgd,k,

[

0.5
∑

d

rdg,k((Edg − m̃gk)
2 + 1/ṽgk)

]−1

) × Γ(β; a0, b0)

q(β) ∼
∏

gk

Γ(βgk; ãgk, b̃gk)

where

ãgk = a0 + 0.5
∑

d

rgd,k

1

b̃gk
=

1

b0
+ 0.5

∑

d

rdg,k((Edg − m̃gk)
2 + 1/ṽgk)

For the posterior distribution of the precision q(α)
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q(α) ∼
∏

k

Γ(αk; s0,

[

1

t0
−
∑

d

log θ̃dk

]−1

) =
∏

k

Γ(αk; s̃k, t̃k)

The iterative equations of interest for the latent variable parameters are therefore

α̃dk = t0s0 +
∑

g rdg,k

rdg,k ∝ θ̃d,k exp
[

−0.5ãgk b̃gk(E
2
dg − 2Edgm̃gk + m̃2

gk + 1/ṽgk) + 0.5(Ψ(ãgk) + log b̃gk)
]

(2.55)

and for the hyper-parameters

ṽgk = v0 + ãgk b̃gk
∑

d rdg,k

m̃gk = 1
vgk

[

v0m0 + ãgk b̃gk
∑

d rdg,kEdg

]

ãgk = a0 + 0.5
∑

d rgd,k
1
b̃gk

= 1
b0

+ 0.5
∑

d rdg,k((Edg − m̃gk)
2 + 1/ṽgk)

s̃k = s0
1
t̃k

= 1
t0
−∑d log θ̃dk

(2.56)

The final form of the update equations given in 2.55 and 2.56 are in-line with what one would

expect. The Dirichlet parameter α̃dk is made up of a prior mean count and a number of

observations. Similarly the parameters ṽgk, m̃gk, ãgk, b̃gk, s̃k and t̃k all decompose into the

form

ξnew = ξprior + ξdata

for a general parameter ξ.
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2.3.6 Evaluation of the Lower Bound

It is useful to be able to evaluate the lower bound on the likelihood F (Θ) given in equation

2.43. Firstly this acts as a test of correct implementation as is should increase with each

iteration of the algorithm until convergence. Secondly it can be used as a comparative

measure to determine the optimal number of components in a mixture distribution.

F (Θ) =
∫

q(Θ)q(θ)q(Z) log p(E,θ,Z|Θ)
q(θ)q(Z) dΘdθdZ −KL(q(Θ)||p(Θ))

=< log p(E,θ,Z|Θ) >θ,Z,µ,β,α − < log(q(θ)) >θ − < log(q(Z)) >Z

−
∫

q(Θ) log
[

q(Θ)
p(Θ)

]

dq(Θ)

(2.57)

Evaluating the elements of the bound given in equation 2.57.

< log p(E,θ,Z, |Θ) >θ,Z,µ,β,α =
∑

d,k(sktk − 1) < log θdk >

+
∑

d,g,k rdg,k [< log θdk >

−0.5agkbgk(E
2
dg − 2Edgmgk +m2

gk + 1/vgk)

+0.5(Ψ(agk) + log bgk)]

(2.58)

< log(q(θ)) >θ=
∑

dk

(α̃dk − 1) < log θdk >

< log(q(Z)) >Z=
∑

dgk

rdg,k log rdg,k

The KL(q(Θ)||p(Θ)) term decomposes into three terms for the parameter set Θ = {µ,β,α},
these can be analytically evaluated making use of the same identities that were needed in eval-

uating the expectations earlier. Here, we shall quote the standard results for KL divergences

as given in [66].
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For the parameter µ, p(µ) ∼ ∏gkN (µgk;m0, v0) and q(µ) ∼ ∏gkN (m̃gk, ṽgk).

KL(q(µ)||p(µ)) =
∑

gk 0.5 log
vgk

v0
+ 0.5v0

[

m2
gk +m2

0 + 1/vgk − 2mgkm0

]

− 0.5

=
∑

gk 0.5 log
vgk

v0
+ 0.5v0 [mgk −m0]

2 + 0.5
[

v0
vgk

− 1
] (2.59)

Where we have grouped the corresponding terms to show KL = 0 when the parameters

from the two distributions are equal. For the parameter β, p(β) ∼ ∏

gk Γ(βgk; a0, b0) and

q(β) ∼∏gk Γ(ãgk, b̃gk)

KL(q(β)||p(β)) =
∑

gk (ãgk − 1)Ψ(ãgk) − log b̃gk − ãgk − log Γ(ãgk)

+ log Γ(a0) + a0 log b0 − (a0 − 1)(Ψ(ãgk) + log b̃gk) +
ãgk b̃gk

b0
(2.60)

Again we shall group the terms to show that KL = 0 when the parameter from the two

distributions are equal.

KL(q(β)||p(β)) =
∑

gk (ãgk − a0)Ψ(ãgk) + a0(log b0 − log b̃gk)

+ log Γ(a0) − log Γ(ãgk) + ãgk

[

b̃gk

b0
− 1
] (2.61)

For the parameter α, p(α) =
∏

k p(αk) ∼
∏

k Γ(αk; t0, s0) and q(α) =
∏

k q(αk) ∼
∏

k Γ(tk, sk)

KL(q(α)||p(α)) =
∑

k (t̃k − 1)Ψ(t̃k) − log s̃k − t̃k − log Γ(t̃k)

+ log Γ(t0) + t0 log s0 − (t0 − 1)(Ψ(t̃k) + log s̃k) + t̃k s̃k

s0

(2.62)

Again grouping the terms, and noting that sk = s0
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KL(q(α)||p(α)) =
∑

k (t̃k − 1)Ψ(t̃k) − log s̃k − t̃k − log Γ(t̃k)

+ log Γ(t0) + t0 log s0 − (t0 − 1)(Ψ(t̃k) + log s̃k) + t̃k s̃k

s0

(2.63)

We shall not give an application of the Variational Bayes approach to parameter estimation

in LPD here but shall use the results here in an application to Microarray data given in

chapter 6.

2.3.7 Monte Carlo Methods

Excellent introductions to Monte Carlo methods are given in [56] and [6]. Here we shall give

a brief overview of Monte Carlo Methods, in particular the Metropolis Method and the Gibbs

Sampler. Monte Carlo Methods are now a commonly used tool for performing inference in

probabilistic models. This class of methods was first introduced in [60] and later extended

in [89]. The methods and their variations are used to solve two main problems in inference:

Sampling and Integration. In sampling we wish to generate samples

{x1, . . . ,xN}

from a density P (x). In integration we want to construct a good approximation to the

expectation of a function f(x) over a density P (x):

< f(x) >=

∫

dxP (x)f(x)

It is commonplace in inference to want to sample from the posterior distribution. In many

cases this is not in a convenient form that allows easy sampling. This is often due to the

complexity of a normalising factor. For example, given the un-normalised density
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Fig. 2.15: Density P̃ (x)

P̃ (x) = exp(x2 − x4/2 + x)

It is straightforward to evaluate P̃ (x) and hence plot (see figure 2.15)

But to generate samples from the true density

P (x) =
P̃ (x)

Z
(2.64)

Z =

∫

exp(x2 − x4/2 + x)dx (2.65)

the normalising factor Z in equation 2.65 must be calculated. This is often hard.

For the problem of integration, a naive approach would be to explore some or all of the state

space uniformly and average over these states.
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< f(x) >' 1

N

N
∑

i

f(xi)

Even for a simple discrete density this often requires an unfeasibly large number of calcu-

lations. For the example given in figure 2.15 the range of the density is [−∞,∞] but the

range that has any significance is arguably [−3, 3]. Under a naive approach computational

time would be wasted on insignificant areas of the state space. The idea of Monte Carlo

methods is to explore the state space in a more orderly way. Variations on this idea include

Rejection Sampling, Importance Sampling and the famous Metropolis Method [56]. We shall

now concentrate on the Metropolis Method.

Markov Chain Monte Carlo

A Markov chain is a discrete time stochastic process. It has the property that its sequence

of random variables are conditionally independent up until the previous point.

P (xN |x1, x2, . . . , xN−1) = P (xN |xN−1) (2.66)

The conditional distribution P (xN |xN−1) is called the transition probability of the process

and governs the evolution of the Markov chain. In the usual way can integrate over the

conditioned variable to obtain the marginal distribution.

P (xN ) =

∫

P (xN |xN−1)P (xN−1)dxN−1 (2.67)

For a given Markov Chain there may exist a stationary, or equilibrium, distribution which

has the property
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π(X) =

∫

P (X|Y )π(Y )dY (2.68)

The Metropolis method is a Markov Chain Monte Carlo method. It constructs a Markov

Chain that has an equilibrium distribution, given by equation 2.68, equal to our target

distribution P (x).

First we assume that we can easily calculate the un-normalised density P̃ (x) given in equation

2.64. We then decide on a proposal density q(y;x(t)). This density dictates where we look to

make the transition x(t) → y, and is dependent on the current state x(t). This density q in

theory can be anything. But a simple choice could be a Gamma distribution, mean centred

on x(t). We then pick an initial state x0 at random. The Metropolis Method then proceeds

as follows:

Sample

y ∼ q(y;x(t))

Compute

a =
P̃ (y)q(x(t); y)

P̃ (x(t))q(y;x(t))

• if a ≥ 1 then x(t+1) = y

• else x(t+1) = y with probability a and x(t+1) = x(t) with probability 1 − a

As can be seen from above the normalising constant Z from equation 2.64 does not come into

the method. It has been effectively cancelled as we are only considering ratios of states. It

can be shown that for a choice of q(x; y) > 0 and as t → ∞ the distribution of x(t) → P (x).

Due to the Markov nature of the samples x(t), successive samples will be correlated. This

will mean a large number of iterations are needed for the distribution to have converged

sufficiently well.
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The Gibbs Sampler

The Gibbs Sampler can be seen as a special case of the Metropolis method. It is the case when

the proposal density q(x; y), for the random variable y, is the full conditional distribution

for y. Additionally each new state is always accepted with probability 1. More thoroughly,

suppose

x = (x1, . . . , xn)

is an N dimensional vector of parameters. The full conditional of xk will be

P (xk|x1, . . . , xk−1, xk+1, . . . , xn) =
π(x1, . . . , xk−1, xk, xk+1, . . . , xn)

∫

π(x1, . . . , xk−1, xk, xk+1, . . . , xn)dxk
(2.69)

For a full Gibbs sampler the full conditional is needed for each element of x. The algorithm

is repeated as follows, sample:

Y1 ∼ π(x1|x2, x3, . . . , xn)

Y2 ∼ π(x2|x1, x3, . . . , xn)
...

Yn ∼ π(xn|x1, x2, . . . , xn−1)

(2.70)

Update:

x1 = Y1

x2 = Y2

...

xn = Yn

(2.71)
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2.4 Examples

We shall now give three examples on how to perform inference. The first is an example of

the Expectation Maximisation algorithm applied to the Gaussian Mixture model given in the

graphical model in figure 2.5. The second is a Gibbs Sampler for the same model given in

figure 2.5, and finally the third is a hybrid Gibbs Sampler - Metropolis Hastings approach to

the Latent Process Decomposition model ([70]) given in the graphical model in figure 2.6.

2.4.1 Example 1: EM for a Gaussian Mixture Model

We start with a set of data samples X = {x1, . . . ,xd}. In a Gaussian Mixture Model, each I

dimensional sample xi is assumed to have been drawn from one of k distinct classes. Each

class is assigned a set of distinct mean µk and covariance Σk parameters. Additionally there

is an overall mixing parameter πk which indicates the total proportion of samples coming

from each class. The total set of model parameters is then:

θ = {µ,Σ, π}

The origin, that is the class from which it was derived, of each sample is unknown. We

therefore additionally define the set of parameters Z = {Z1, . . . , Zd} that indicate from which

class a sample xi was generated. In particular, Zi = k indicates that sample i came from

class k. The first step is to derive an expression for the Completed Data likelihood p(Z,X|θ),
originally given in equation 2.30.

p(Z,X|θ) =
∏

d

p(Zd,xd|θ) (2.72)

As each sample has come from once specific class, δdk = δ(Zd, k) will have a single non-zero

element at the point when Zd = k, so δdk = P (Zdk = 1). Thus,

65



CHAPTER 2. PROBABILISTIC MODELS

p(Zd, xd|θ) =
∑

k δdkp(Zd = k, xd|θ)
=
∑

k δdkp(δdk = 1, xd|θ)
=
∑

k δdkp(δdk = 1|θ)p(xd|δdk = 1, θ)

=
∑

k δdkp(δdk = 1|π)p(xd|δdk = 1, µk,Σ =k)

=
∑

k δdkπkp(xd|Zd = k, µk,Σk)

(2.73)

As there is only one non-zero element of δdk, and it is equal to unity, we can log equation

2.73 and bring the summation to the front, giving:

log(Zd, xd|θ) =
∑

k

δdk log [πkp(xd|Zd = k, µk,Σk)] (2.74)

So in total, combining equations 2.72 and 2.74.

log(Z,X|θ) =
∑

d,k δdk log [πkp(xd|Zd = k, µk,Σk)]

=
∑

d,k P (Zdk = 1) log [πkp(xd|Zd = k, µk,Σk)]
(2.75)

We can now evaluate Q(θ|θn) given in equation 2.33.

Q(θ|θn) = EZ [log p(Z,X|θ)|X, θn]
= EZ [P (Zdk = 1) log (πkp(xd|Zd = k, µk,Σk)) |X, θn]
=
∑

d,k EZ [P (Zdk = 1|xd, (θn)k)] log (πkp(xd|Zd = k, µk,Σk))

(2.76)

Take (θn)k = θnk to be the set of parameters for class k after n iterations, so (πn)k = πnk

and likewise for µ and Σ. We can re-express the expectation via Bayes theorem:

EZ [P (Zdk = 1|xd, θnk)] = P (Zdk = 1|xd, θn) (2.77)
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P (xd|Zdk = 1, θnk)P (Zdk)

P (xd)
=
P (xd|Zdk = 1, µnk,Σnk)πnk
∑

k′ P (xd|Zdk′ = 1, θnk)πnk′
(2.78)

For convenience we shall write

γnk(xd) = P (xd|Zdk = 1, µnk,Σnk)πnk (2.79)

combining equations 2.76, 2.77 and 2.78.

Q(θ|θn) =
∑

d,k

γnk(xd) log (πkp(xd|Zd = k, µk,Σk))
∑

k′ γnk′
(2.80)

For simplicity we shall assume that Σ is isotropic. That is, it only has diagonal elements.

The logged density can then be written:

log p(xd|µk,Σk) =
∑

i

−(xdi − µki)
2

2σ2
ki

− log(σki) −
log(2π)

2
(2.81)

Using equations 2.80 and 2.81 we can now maximise Q(θ|θn) for the parameters µ, σ and π

∂Q(θ|θn)
∂µki

∝
∑

d

γnk(xd)(xdi − µki) (2.82)

∂Q(θ|θn)
∂σki

∝
∑

d(xdi − µki)
2

σ3
ki

− 1

σki
(2.83)

π is a multinomial parameter and so is constrained by
∑

k πk = 1, the maximisation is

therefore restricted by using a Lagrange multiplier λ
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∂

∂πk

[

Q(θ|θn) − λ(
∑

k

πk − 1)

]

∝
∑

d γnk(xd)

πk
− λ (2.84)

Zeroing these gradients we are left with the equations:

µki =

∑

d γnk(xd)(xdi)
∑

d γnk(xd)
(2.85)

σki =

∑

d γnk(xd)(xdi − µki)
2

∑

d γnk(xd)
(2.86)

πk ∝
∑

d

γnk(xd) (2.87)

The EM algorithm for a Gaussian Mixture Model is thus:

• E-Step: Calculate γnk(xd) in equation 2.79.

• M-Step: Update µ, σ and π using equations 2.85, 2.86 and 2.87.

We shall now give a very simple practical example of the EM algorithm applied to one

dimensional data. Figure 2.16 shows a histogram of artificially generated data. This data was

sampled from 3 distinct Gaussian distributions with Means 0, 5 and 10. The EM algorithm

was then run to fit a number of Gaussian distributions to the data. Figure 2.17 shows the

results of a 3 component mixture model. The continuous lines show the densities of the

estimated distributions. As the data was originally generated by a 3 component mixture the

estimated distributions provide a good fit to the data. Figure 2.18 shows the same results

but for a 5 component mixture, additionally the combined distribution is plotted. With an

additional two components the mixture model will more closely fit the data, this is however

not necessarily desirable as there is some clear over-fitting.
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−4 −2 0 2 4 6 8 10 12 14
0
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Fig. 2.16: Artificially Generated Data from 3 Gaussians

−4 −2 0 2 4 6 8 10 12 14
0
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0.2

0.3

Fig. 2.17: A 3 Component Mixture Derived using the EM algorithm
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Fig. 2.18: A 5 Component Mixture Derived using the EM algorithm. The continuous plot
gives the combined mixture density.

2.4.2 Example 2: Mixture Model Gibbs Sampler

We shall now derive a Gibbs sampler for the model given in figure 2.5. The approach given

here is very standard. As described in section 2.3.7 the Gibbs sampler requires sampling from

the full conditional distribution for each parameter. To ensure ease of sampling conjugate

prior distributions have been chosen.

As before the Mixture model is defined by a set of model parameters.

Θ = (π, µ, σ)

The likelihood of the data given the model parameters is:

L(x|Θ) =
∏

d

∑

k

πkP (xd|µk, σ2
k)
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π is a discrete mixing parameter and has a uniform Dirichlet prior.

P (π) ∼ Γ(K × α)

Γ(α)K

K
∏

k

πα−1
k

µ is the mean of a Gaussian distribution as has a zero mean Gaussian prior.

P (µ) ∼ N(0, τ 2)

σ2 is the variance of a Gaussian an has an Inverse Gamma prior.

P (σ2) ∼ ss12
Γ(s1)σ2(s1+1)

exp

(−s2
σ2

)

The joint Posterior of the parameters can be written

P (π, µ, σ|x, τ, s, α) = P (π, µ, σ,x|τ, s, α)/P (x)

∝ P (π, µ, σ,x|τ, s, α)

= P (x|π, µ, σ)P (π|α)P (µ|τ)P (σ|s)
(2.88)

P (π, µ, σ|x, α, τ, s) ∝ ∏

d

[

∑

k πk
1
σk

exp(− 1
2σ2

k

(xd − µk)
2)
]

×∏k π
α−1
k

∏

k exp(− µ2
k

2τ2 )
∏

k

exp

(

−s2
σ2

k

)

σ
2(s1+1)
k

(2.89)

A common technique for simplifying posteriors for Mixture distributions is to introduce model

indicators. γd indicates which mixture sample xd came from.

γd ∈ (1, 2, ..., k)
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The likelihood is now written:

L(x|Θ) =
∏

d

P (xd|µγd
, σ2

γd
)

and

P (γ = k) = πk

P (γ1, ...γd|π1, ..., πk) =
∏

d

P (γd|π) =
∏

k

πnk

k

with nk number of samples coming from mixture k. The posterior from equation 2.88 is now

written

P (γ, µ, σ2, x) ∝ P (x|π, µ, σ)P (γ|π)P (µ)P (σ)P (γ)P (π)

∝∏d

[

1
σγd

exp(− 1
2σ2

γd

(xd − µγd
)2)
]

×∏k π
nk

k

∏

k exp(− µ2
k

2τ2 )
∏

k

exp

(

−s2
σ2

k

)

σ
2(s1+1)
k

∏

k π
α−1
k

(2.90)

The conditional distribution for each parameter is proportional to the joint distribution. By

reading off each conditional from equation 2.90 and rearranging we have

P (π|γ, µ, σ2,x) ∝
∏

k

πnk

k

∏

k

πα−1
k

P (π|γ, µ, σ2,x) ∼ Dirichlet(n1 + α− 1, . . . , nk + α− 1) (2.91)

P (µ|γ, π, σ2,x) ∝
∏

d

[

1

σγd

exp(− 1

2σ2
γd

(xd − µγd
)2)

]

∏

k

exp(− µ2
k

2τ2
)
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P (µk|γ, π, σ2,x) ∼ N
(

τ2
∑

d δ(γd, k)xd
nkτ2 + σ2

,

(

nk
σ2

+
1

τ2

)−1
)

(2.92)

P (σ2|γ, π, µ,x) ∝
∏

d

[

1

σγd

exp(− 1

2σ2
γd

(xd − µγd
)2)

]

∏

k

exp
(

−s2
σ2

k

)

σ
2(s1+1)
k

P (σ2
k|γ, π, µ,x) ∼ InverseGamma

(

s2 +
D

2
, s1 +

1

2

∑

d

δ(γd, k)(xd − µγd
)2

)

(2.93)

Using
∏

k π
nk

k =
∏

d πγd

P (γ|π, µ, σ2,x) ∝
∏

d

πγd

[

1

σγd

exp(− 1

2σ2
γd

(xd − µγd
)2)

]

P (γd = k|π, µ, σ2,x) ∝Mult

(

πk exp(− 1

2σ2
k

(xd − µk)
2)

)

(2.94)

Notice how through the use of conjugate priors each Posterior is a member of the same class

of distributions as its corresponding Prior. We now give a simple demonstration of a Gibbs

Sampler. 100 one dimensional random variables were sampled from a Mixture model with

the following parameters µ1 = 1, µ2 = 5 and µ1 = 10 σ1 = σ2 = σ3 = 1, π1 = 0.25, π2 =

0.65, π3 = 0.1. The Gibbs sampler given by equations 2.91 to 2.94 was then run for 2000

iterations with a burn in of 1000 iterations. The burn in period is a sequence of N iterations

that discarded and do not contribute to the posterior distributions. There is some debate as

to whether or not a burn in period is strictly necessary (see [1]), but at the least it provides

a suitable initialisation for the parameters in the model. The next 1000 iterations form the

samples which will make up the posterior distributions. The choice of 1000 is somewhat

arbitrary but as a obvious general rule the minimum number of iterations increases with the

number of parameters (ie number of posterior distributions) in the model.
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Fig. 2.19: Histogram of the posterior distribution for π

0.5 1 1.5 2 2.5 3
0

50

100

150

Fig. 2.20: Histogram of the posterior distribution for σ2
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Fig. 2.21: Histogram of the posterior distribution for each µ
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Fig. 2.22: Normalised histogram of original data also showing the inferred density as a bold
line and the actual density as a dashed line
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Figures 2.19 to 2.21 show histograms represents the posterior density of the model parameters

π, σ2 and µ. Figure 2.22 shows a histogram of the original data. Additionally plotted, in

a bold line, is a mixture density using the means of the posterior of µ, σ and π and in

a dashed line a mixture density for the original parameters. As can be seen the posterior

densities are all peaked near the values of the original parameters used to generate the data.

By comparison to the results from the EM algorithm in section 2.4.1 we see how much more

information the Gibbs sampler gives us by providing the full posterior distributions rather

than just a point estimates.

2.4.3 Example 3: LPD Gibbs Sampler

We have introduced the graphical model for the Latent Process Decomposition ([70]) algo-

rithm in section 2.2. A Markov chain Monte Carlo algorithm for performing partial inference,

that is with some model parameters remaining fixed, for the related LDA model is given in

[39]. We shall give the full derivation for LPD here. As in the previous example to construct

a Gibbs Sampler we need to derive full conditional distributions for each of the parameters.

The following distributions will be needed.

P (α|µ, σ, θ, Z,E)

P (θd|α, µ, σ, θ−d, Z,E)

P (Zdg|α, µ, σ, Z−(dg), θ, E)

P (µgk|α, µ−(gk), σ, θ, Z,E)

P (σgk|α, µ, σ−(gk), θ, Z,E)

(2.95)

Each of these conditional distributions is proportional to the joint, which can be factored as

follows:

P (Z, θ,E, µ, σ, α) = P (Z, θ,E|µ, σ, α)P (µ)P (σ)P (α)
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P (Z, θ,E|µ, σ, α) = P (θ|α)
∏

g

P (Zg|θ)P (Eg|Zg, µ, σ)

In full

P (Z, θ,E, µ, σ, α) =
∏

d

Γ(
∑

h αk)
∏

k Γ(αk)

∏

k′

θ
αk′−1
dk′

∏

k,g



θdk
1

√

2πσ2
gk

exp(−(Edg − µgk)
2

2σ2
gk

)





I{Zdg=k}

(2.96)

Where I{Zdg=k} is an indicator variable giving the process chosen for the g’th element of

example d. Conjugate prior distributions are taken to allow easy sampling from the posterior.

P (α) ∼ Gamma(a, b) =
1

Γ(a)ba
αa−1e−x/α

P (µgk) ∼ N (0, τ) =
1√

2πτ2
exp(−

µ2
gk

2τ2
)

P (σ2
gk) ∼ InverseGamma(s1, s2) =

ss12
Γ(s1)σ2(s1+1)

exp

(−s2
σ2

)

Combining these prior distributions with the joint given in equation 2.96 we have the following

distributions for those given in equation 2.95.

P (α|θ) ∝ P (θ|α)P (α)

∝∏k e
(αk−1) log θdk 1

Γ(a)baα
a−1
k e−αk/b

∼ Gamma(a, b̂)

(2.97)

Where

b̂ =

(

1

b
−
∑

d

log(θdk)

)−1
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P (θ|α,Z) ∝∏dk θ
αk+

∑

g I{Zdg=k}

dk

P (θd|α,Z) ∼ Dirichlet(α1 +
∑

g I{Zdg=1}, . . . , αk +
∑

g I{Zdg=k})
(2.98)

P (Zdg|α, µ, σ, Z−(dg), θ, E) = P (Zdg|µ, σ, θd, Edg)

∝∏k

(

θdk
1

√

2πσ2
gk

exp(− (Edg−µgk)2

2σ2
gk

)

)I{Zdg=k} (2.99)

Hence, Zdg is a multinomial, M(γ, 1) with γk = θdk
1

√

2πσ2
gk

exp(− (Edg−µgk)2

2σ2
gk

).

Let t index the d st Zdg = k with T =
∑

d I{Zdg=k}

P (µgk|α, µ−(gk), σ, θ, Z,E) = P (µgk|σgk, θd, Z.g, E.g)
∼ N (

τ2
∑

t Etg

Tτ2+σ2
gk

, ( T
σ2

gk

+ 1
τ2 )−1)

(2.100)

P (σ2
gk|α, µ, σ−(gk), θ, Z,E) ∼ InverseGamma

(

s2 +
T

2
, s1 +

1

2

∑

t

(Etg − µgk)
2

)

(2.101)

The full derivation for the conditional distributions of µ and σ is given in Appendix A. We

shall not give an application of this Gibbs Sampler here but shall use the results here in an

application to Microarray data given in chapter 6.
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Chapter 3

Deriving a Hierarchical

Representation of Lung Disease

using Re-Sampling Mixture

Models

3.1 Introduction

A common task in medical image processing is to segment images. That is to separate parts

of the image into separate regions defined by appearance, function, the presence of disease

or some other criteria. Viewing individual medical images as made up of a number of small

cells, typically 4 × 4 pixels or larger, one view of segmentation is of clustering these small

cells into self similar groupings. In this section we present a novel extension to the Latent

Dirichlet Allocation (LDA) algorithm ([15]). This model is a generative probabilistic model

which clusters Computed Tomography (CT) chest scans to give a hierarchical representation

of disease.

This research in this chapter was carried out as an initial investigation into using decompos-

able probabilistic models on image data, with this in mind there is equal emphasis put on
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the mathematical techniques and the application. This work was presented at and appeared

in the proceedings of MIUA - Medical Image Understanding and Analysis 2005 - University

of Bristol, 19-20 July, 2005, [21].

3.2 Motivation

In recent years there has been an increased interest in the classification of medical images

[76], [82]. This has been due to increased availability of data and also increased processing

power that enables real time computer aided diagnosis. Most of this work has been in the

area of supervised classification. That is, learning to classify distinct tissue types based on

labelled examples. This is undoubtedly a sensible way to proceed. However it requires a

substantial quantity of hand labelled data which was unfortunately not available. It also,

in a sense only confirms what we already know. For these reasons we will proceed in an

entirely unsupervised manner. We describe some intuitive qualities of LDA which confirm

its suitability as a technique for learning from Radiological data. LDA is a state of the

art generative hierarchical Bayesian model which can be thought of as a generalisation of

traditional mixture models. The mixing quantities, rather than being fixed as in a standard

mixture-model, are drawn from a Dirichlet distribution for each example in the data. This

re-sampling allows a single example, in this case a CT scan, to have been generated by a

mixture of aspects.

We shall derive a new multilevel extension to LDA and apply this model to CT image data.

The results act as a demonstration of the techniques involved, and as no hand segmented

scans are available no absolute measure of the accuracy of results can be given.

The spectrum of lung disease naturally falls into a classification in the form of a hierarchy.

Figure 3.1 was drawn up by a consultant radiologist. In the first level of the hierarchy the

classification is most general, with the distinction of More Dense and Less Dense tissue.

More Dense tissue will have a higher Hounsfield unit and appear a lighter colour on a CT

image where as Less Dense tissue will appear darker. As you progress down the hierarchy

the classifications become more specialised ending at the leaf nodes with well known diseases

such as Fibrosis and Emphysema. We want try to recreate the hierarchy in an unsupervised
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Fig. 3.1: Consultant’s Hierarchy of Disease

way. As the top level only contains Less Dense and More Dense tissue, we would need to

extend this to include Normal as well. So in total for our unsupervised approach we would

be looking for 3 top level nodes and 7 lower level nodes.

3.3 Data and Methods

The CT scans are a collection (∼40 per person) of longitudinal cross sections taken from the

chest. For more in depth discussion of CT chest scans see chapter 1. The lung area was

segmented using simple thresholding and the remaining image split into 4 × 4 pixel regions.

A set of eighteen statistical image features is then generated for each of these regions. Each

feature is based on the intensity of the pixels.

These features were
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Fig. 3.2: Example Image

• Statistical Based: Mean, Maximum, Minimum, Range, Standard Deviation, Lower 25th

percentile, Upper 75th percentile, Mean Average Deviation, Skewness, Kurtosis.

• Fourier Transform Based: Maximum, Average, Energy.

• Fractal Based: Fractal Dimension.

• Autocorrelation Base: First calculate the one step autocorrelation for 3 directions - hor-

izontal, vertical and diagonal. Then take the Sum, Product, Maximum and Minimum

of these three values.

The CT scan shown in figure (3.2) is a 512 × 512 pixel image given in Hounsfield units (-

1000 for air +1000 for bone). This has been converted to a grey scale for viewing. To try

and mirror the structure given in 3.1, a straight forward approach would be to cluster an

individual scan using a hierarchical agglomerative approach. Then chop the tree to give 3

top level nodes and 7 lower level nodes. Hierarchical clustering with a Euclidean metric and

average link merging was applied to the single image given in figure 3.2. For computational

reasons simultaneous hierarchical clustering of more than one image was not possible. For

this reason clustering results from this method will not give an comparable overview of the
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Fig. 3.3: Dendrogram for one scan

Fig. 3.4: Images for node 4,5 and 7

whole image database.

Figure 3.3 shows the derived hierarchy for a single image. While figures 3.3 and 3.5 show the

decomposition of the image into the 7 leaf nodes, and figure 3.6 shows the top 3 parent nodes.

In each image white indicates membership of that cluster. At the lower level, the clustering

algorithm splits the image into seven clusters, three of which are significant. The cluster for

node 4 given by the first image in figure 3.3 shows mainly normal and less dense tissue, while

the cluster for node 7 given by the third image in figure 3.3 shows more dense tissue. The

remaining cluster of significance is cluster for node 1. This is essentially modelling noise that

is often present in a CT image at the boundary of the lungs.

As an alternative approach which would encompass the whole data set we constructed a

probabilistic model which would cluster regions from individual CT images into a hierarchy.

This hierarchy would be inferred using all the CT images available. The model is given in
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Fig. 3.5: Image for nodes 2 and 3 and for nodes 1 and 6

Fig. 3.6: Images for three parent nodes. Specifically, the parent of groups ’4 + 5 + 7’, ’1 +
6’ and ’2 + 3’ respectively.

figure (3.7).

One of the assumptions we make is that distinct tissue types, such as Fibrotic, Normal or

any number of other possibilities, broadly fall into clusters that are defined by their features.

This is reasonable as the first node in figure 3.1 separates less dense from more dense which is

very closely related to the mean pixel value. Additionally the model assumes that each image

is made up of a mixture of different tissue types. These types come from distinct Gaussian

distributions, with a unique mean µ and variance σ for each of the 18 statistical features.

The proportions of each type present is specific to an individual image and has been sampled

from a Dirichlet distribution with parameter α.

There is also a second level which allows the division of the types into further subtypes.

The types are related to the sub-types through a multinomial parameter β. As is standard

for graphical models the circles in figure (3.7) give variables, with α, µ, σ, µ
′
σ

′
and β

model parameters to be estimated and θ, Z and Y latent variables. Arcs show conditional

dependencies between variables and frames indicate ex-changeability. The generative process

is such that the images are each generated twice. Once in the upper level of the hierarchy

and once in the lower, the connection between these two levels is linked by the parameter

β which is model parameter to be estimated. More formally the generative process for each
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Fig. 3.7: Generative Model for the Hierarchical extension to LDA. The Shaded nodes indicate
the image regions, the observed data. Square nodes in the model parameters indicate we are
making a point estimate of these.

image is:

• Sample a multinomial θ from a Dirichlet distribution. This defines the mixing quantities

at the upper level in the hierarchy.

• Top Level Image Generation:

• → For each region, Rnd, in the image draw a sample from θ to give a process Z = k.

This Z then defines the set of Gaussian distributions for each feature for this region.

• → For each feature, Rndf , for the region sample the chosen Gaussian. This has param-

eters µfk and σ2
fk.

• Lower Level Image Generation:

• → For each region, Rnd, in the image draw a sample from P (Yn = k′|Zn = k, β)P (Zn =

k) to give a process Y = k′. This Y then defines the set Gaussian distributions for each

feature for this region.

• → For each feature, Rndf , for the region, sample the chosen Gaussian. This has param-

eters µ
′

fk′ and σ
′2
fk′ .

The indices’s read as follows: d is an image index, n is for the number of regions within
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an image, f is for the features, k and k
′

index types and subtypes respectively. There are

many ways to estimate unknown parameters for a probabilistic model [57]. We shall use

Variational Expectation Maximisation (EM) to give us a point estimate of the posterior

parameter distributions.

P (d|µ, σ, β, α, µ′
, σ

′
, β) =

∫

4

∏Nd
n

∑

k P (Rnd|Zn = k, µ, σ)P (Zn = k|θ)P (θ|α)

∏

n

∑

k,k′ P (Rnd|Yn = k′, µ
′
, σ

′
)

P (Yn = k′|Zn = k, β)P (Zn = k|Rnd, θ)dθ

(3.1)

The likelihood for the model is given by equation (3.1). The first part

∫

4

Nd
∏

n

∑

k

P (Rnd|Zn = k, µ, σ)P (Zn = k|θ)P (θ|α)dθ

accounts for the upper plate in figure 3.7, the initial clustering stage. While

∏

n

∑

k,k′

P (Rnd|Yn = k′, µ
′
, σ

′
)P (Yn = k′|Zn = k, β)P (Zn = k|Rnd, θ)

accounts for the lower plate, namely the hierarchical structure and bottom level clustering.

To apply a Variational EM algorithm we have to first form a tractable lower bound on the

likelihood in equation 3.1. We apply Jensen’s inequality three times. First to break coupling

between variables within an integral and then twice to break coupling between variables

within a summation. This introduces three latent variables, γ a image specific Dirichlet

parameter, φ the probability that in the first level of the hierarchy, region n in image d has

been generated by process k and η which is analogous to φ for the second level. This bound

is then maximised for all model parameters and latent variables. A full derivation is given in
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appendix B. The resulting update equations are:

µfk =
∑

d,n φndkRndf
∑

d′ φnd′k

σ2
fk =

∑

d,n φndk(Rndf−µfk)2
∑

d′ φnd′k

φndk ∝∏f P (Rndf |Zn = k, µfk, σfk). exp [Ψ(γdk) − Ψ(
∑

k γdk)]

× exp
∑

f,k′ ηndk′ log
[

P (Rndf |Yn = k′, µ
′
, σ

′
)
]

. exp
∑

k′ ηndk′ [log βkk′ + log ηndk′ ]

µ
′

fk′ =
∑

d,n ηndk′Rndf
∑

d′ ηnd′k′

σ
′2
fk′ =

∑

d,n ηndk′ (Rndf−µfk′ )
2

∑

d′ ηnd′k′

ηndk′ ∝∏f P (Rndf |Yn = k, µ
′

fk′ , σ
′

fk′)). exp(
∑

k φndk log βkk′)

βkk′ ∝∑d,n φndkηndk′

γdk = αk +
∑

n φndk

αnew = α−H(α)−1g(α)

(3.2)

Where H is the Hessian and g the gradient of the bounded likelihood with respect to the

parameter αk. Expressions for these are given in equations 3.3 and 3.4. Due to the special

form of the Hessian, a diagonal + constant, inversion is straightforward (see [15] for details).

g(α) =
∂L

∂αi
= D

[

Ψ(
∑

k

αk) − Ψ(αi)

]

+
∑

d

[

Ψ(γdi) − Ψ(
∑

k′

γdk′)

]

(3.3)
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H(α) =
∂L2

∂αi∂αj
= DΨ

′

(

∑

k

αk

)

−DΨ
′
(αi)δij (3.4)

The equations 3.2 are iterated until convergence. The approach is attractive as it is an

intuitive way in which we can think about the structure of the lung. It assumes that there is

a finite number of appearances or themes for each region in the lung. The number of themes

is defined by the number of processes in the top level of the hierarchy. These general types

can then be split into a number of sub-clusters (defined by the number of process in the

second level) which represent more specific tissue types.

To calculate the likelihood we need to evaluate 3.1. As this contains an intractable integral

an approximation technique is needed. It would be possible to appeal to the Monte Carlo

framework from section 2.3.7, but we shall use a simple averaging method. This first re-

quires drawing T samples, θ1, . . . , θT from a Dirichlet distribution using the estimated model

parameter α, and then evaluating the sum

P (d|µ, σ, β, α, µ′
, σ

′
, β) ' 1

T

∑

t

∏Nd
n

∑

k P (Rnd|µk, σk)θtk

∏

n

∑

k,k′ P (Rnd|µ
′

k′ , σ
′

k′)βkk′P (Zn = k|Rnd, θt)
(3.5)

3.3.1 Results and Comment

The model was applied to a collection of 60 individual CT images taken from a total of

24 patients. After segmentation, there were typically ∼4000 resulting 4 × 4 regions in each

scan. To estimate the parameters update equations (3.2) would be then iterated until the

parameters had converged. Although we know that we want to choose 3 processes in the

upper level and 7 processes in the lower level of the hierarchy it is possible to optimally

choose these by performing a cross validation. This is done by sequentially leaving out 10%

of the data, then estimating the model parameters on the remaining 90%. The likelihood L1

of the held out 10%, with respect to the estimated parameters, is then approximated using

equation 3.5. This is then repeated for all 10 cross validations to give a mean log likelihood
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Process 1

Process 6

Process 4

Process 1

Process 7

Process 3

Process 3

Process 2

Process 2

Process 5

Fig. 3.8: Figure showing membership to each process in the hierarchical model. The width
of an arrow is ∝ β
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Fig. 3.9: A plots showing the average held out log likelihood with standard error bars for
varying choices of the number of upper and lower processes in the hierarchy.

L̂ =
1

10

10
∑

i

Li

and a standard error

E =
1√
10

10
∑

i

√

L2
i − L̂2

A plot of the mean log likelihood for vary choices of the number of upper and lower processes

is given in figure 3.9.
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Fig. 3.10: A plot showing the likely resulting hierarchy for a choice of 5 processes in the upper
and lower levels. Note the connecting parameters β would be 1 for one connection between
processes and zero for all others

The maximum cross validated likelihood in figure 3.9 is obtained at (5,5). This is not a

particularly significant result as the standard errors for each average are larger than the

differences between these averages. However it is of no surprise that maximum is obtained

when there are the same number of processes in the upper and lower levels of the hierarchy.

In both levels of the hierarchy a number of processes is being fitted to the same data, so

one would expect the optimal number to be the same in each case. With this choice it is

likely that the connecting parameter β would give a 1 to 1 mapping between upper and

lower processes. This is demonstrated in figure 3.10. Although the cross validated maximum

likelihood solution is interesting, we will choose 3 processes in the upper level and 7 processes

in the lower level of the hierarchy as this is what was given originally in consultants hierarchy

of disease (shown in figure 3.1).

First we shall consider an image that was present in the data used to estimate the parameters.

Figure 3.8 shows the decomposition of figure 3.2 into 3 top level processes and 7 sub processes.

The intensity of the pixel shows the probability that that region was generated by the given

process. This is simply the latent variable φndk. The width of the connecting arrows are ∝ β,

a multinomial parameter with a range of 0-1, which sums to 1 for a given lower level process.

3 and 7 processes were chosen as this corresponded to the consultants original hierarchy.

We see that in the top level process 1 represents all the Normal, all the Emphysema and

a small amount of Mild Fibrosis, Process 2 is empty and Process 3 represents more severe

Fibrosis. The lower level process 6 contains all Normal tissue and comes entirely from top

process 1. Process 1 is all Emphysema and also comes from top process 1, and process 2 is all

Fibrosis and contains the regions from top processes 1 and 3. The remaining Processes are

all essentially empty for this image. It is interesting to note that Emphysema and Normal
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Process One Two Three

P (Image|Process) 0.4222 0.4352 0.1425

Tab. 3.1: Probability of the image given in figure 3.11 for each process in the top level

Process One Two Three Four Five Six Seven

P (Image|Process) 0.0262 0.1447 0.3728 0.0133 0.0497 0.3553 0.0381

Tab. 3.2: Probability of the image given in figure 3.11 for each process in the lower level

were grouped together in the top level decomposition. This demonstrated greater difference

between the regions represented by Process 2 and 3 than between Emphysema and Normal.

As an example of classification we shall classify an image that was not present in the training

data. To test an image we retain the model parameters µ, σ, µ′, σ′, α and β (β is a model

parameter as it is external to the second level). The probabilities for the generation of each

region by each process in both levels of the hierarchy are then calculated from the unseen

data and model parameters. For the 4 × 4 testing image there are 3130 regions so only a

normalised sum of these probabilities will be given across all the regions for each process.

These normalised sums are given in tables 3.1 and 3.2. The unseen image to be classified

into the hierarchy is given in figure 3.12. This patient is suffering from Fibrosis, shown

as the denser areas. This is especially seen in upper section of the right lung. The large

circular shape appearing in the left lung is the top of the liver and should be regarded as

noise. Figure 3.12 gives the top level decomposition and figures 3.13 and 3.14 give the lower

level decomposition. In the top level, process 2, which was essentially empty in figure 3.8,

is all Normal tissue. This decomposes further in the second level giving lower level process

3. Process 1 shows a mixture of Fibrosis and Normal. This decomposes into lower level

processes 2 and 6. Lower process 2 is all Fibrosis and lower process 6 is all Normal, which

are both agreement with the same process in figure 3.8. Comparison with the image shown

in figure 3.8 suggests that there is often a blurring of the lines between Emphysema, Fibrosis

and Normal. A hierarchical decomposition gives us an idea of where we should introduce

disease sub-types, and to what extent the standard medical classification into disease types

is appropriate for machine learning problems.
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Fig. 3.11: Unseen image

Fig. 3.12: Top Level decomposition

Fig. 3.13: Processes 1-3 in the lower level decomposition
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Fig. 3.14: Processes 4-7 in the lower level decomposition

3.4 Conclusions and Future Work

We have demonstrated a novel extension of LDA to radiological data. The estimated posterior

can be used for prediction and classification. The whole process is completely unsupervised,

this is an important point to make in the case of medical image data as hand labelled scans are

expensive in time and often very dependent on the expert involved. Unsupervised methods

can additionally highlight were specific disease classifications are unsuitable for a machine

learning algorithm. An example of this is consolidation. This is described in [38] as ’when

air within the acinus is replaced by fluid, tissue or exudate resulting in opacification of the

parenchyma’, it is a situation in which the finding can have a number of very distinct ap-

pearances. Without individual labelling of these sub-types a supervised algorithm would,

without much success, try and learn the defining features of consolidation. Conversely an

unsupervised algorithm could identify the sub-types and model each one individually with

greater success. It is clear that automated radiological diagnosis is a complex problem. There

are an immense number of possible diseases and widespread variability in their appearance.

On a relatively small data set we have shown some promising results that would no doubt be

improved given more examples. A natural progression from the models given in this paper

has been to construct a framework that simultaneously models both the image data and

textual report data [19]. Using this it is possible to learn to classify CT images into specific

diseases in a completely unsupervised manner.
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Chapter 4

Unsupervised Learning in

Radiology using Novel Latent

Variable Methods

4.1 Abstract

In this paper we compare a variety of unsupervised probabilistic models used to represent a

data set consisting of textual and image information. We show that those based on Latent

Dirichlet Allocation (LDA) outperform traditional mixture models in likelihood comparison.

The data set is taken from radiology; a combination of medical images and consultants re-

ports. The task of learning to classify individual tissue, or disease types, requires expert hand

labelled data. This is both expensive to produce and prone to inconsistencies in labelling.

Here we present methods that require no hand labelling and also automatically discover sub-

types of disease. The learnt models can be used for both prediction and classification of new

unseen data. This work was presented at and appeared in the proceeding of CVPR - IEEE

Computer Society International Conference on Computer Vision and Pattern Recognition

2005 - San Diego, CA, USA, June 20-25, 2005, [19].
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4.2 Introduction

Learning the relationship between images and textual data has been studied in a wide range

of applications ([9], [8],[16]).The majority of these have been in the field of supervised clas-

sification, that is where the textual data contains only one element and so has a clearly

defined correspondence with the image. It is common in radiology ([81]), to expertly label

portions of a CT scan with its tissue type and then train a classifier using this labelled data

to recognise unseen examples of labelled diseases. Though these methods can be on the whole

very successful, they have a number drawbacks. The process is dependent on a substantial

quantity of expertly labelled data, which is both expensive to generate and can often contain

internal inconsistencies. In ([76]), great care is taken in deciding which regions of interest

(ROIs) are used, and what proportion of a ROI can in-fact be considered truly representative

of disease. Another drawback in labelling is that most disease cannot be diagnosed by taking

an image region in isolation, but is correctly classified using other additional information such

as patient history and symptoms. There is also no guarantee that a well established medi-

cal classification of disease should necessarily translate to a well defined pattern recognition

problem. Here we are interested in demonstrating advantages of Computer Aided Diagnosis,

and exploiting these, not trying to create an Artificial Radiologist. To avoid the problem of

labelling individual regions we use entirely unsupervised methods. On one level, the models

used here can be seen as a clustering of fused data. The data consists of Radiology reports

and axial Computed Tomography (CT) chest scans. The data is linked by patient number

so that a report can be paired with its corresponding images. The Radiology reports are

free-text documents describing history, symptoms and observations. For the purposes of this

experiment the reports are converted into binary vectors of the words of interest - Fibrosis,

Normal, Emphysema. Additional words such as Mild/Early Fibrosis, Ground Glass, Consol-

idation were considered, but as we are in part attempting to discover classifiable sub types

of disease we take only the most general terms. These words can be extracted by key-word

searching, or by using the specialist Natural Language Processor MedLEE ([35]). The CT

scans are a collection (∼40 per person) of longitudinal cross sections taken from the chest.

Figure (4.5) is given as an example, it is a 512 × 512 pixel image given in Hounsfield units

(-1000 for air +1000 for bone), and is converted to a grey scale here for viewing. The lung

area is segmented using a simple threshold and region growing algorithm and then split into

square blocks. A set of eighteen image features is then generated for each block. Blocks
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are taken to be of size 4 × 4, 8 × 8 or 16 × 16 pixels, giving three separate data sets. The

image features are transformed to have zero mean and unit variance. In total there were 310

individual CT scans, taken from a population of 24 patients. If expertly labelled training

data does exist, then this can easily be incorporated into the model as a Faked image-report

pairing in which there exists only a single region and a single term. In this study no such data

was used. Feature selection for classification of CT chest images has been studied in great

detail ([82],[76]). In this paper we restrict ourselves to common statistical features such as

moments, autocorrelations and FFTs. The probabilistic models given here are all generative

mixtures. That is, the data is assumed to have been generated under a scheme containing

a mixture of classes. We shall refer to these classes as processes or topics. Latent variable

methods work by assuming that some variables of interest are missing. Their values are then

estimated based on the observed data. The introduced latent variables often give tractabil-

ity to parts of the problem. The simplest model discussed here is a Gaussian-Multinomial

mixture model. Mixture model approaches have been used before in medical applications for

the segmentation of images([64]). For the problem of data fusion standard mixture models

are very restrictive. They require both data elements, in this case all terms and regions in an

image, to have been generated by the same underlying process. The richer class of models

we use that are based on LDA allow a re-sampling of distributions for individual regions (or

even features) within an image. This is essential in the analysis of chest images as disease

can always be localised within a small area, and almost never has a global (entire image)

appearance. Models combining words and images in an LDA based generative model have

been introduced in [8] and [16].

4.3 Models and Methods

We applied a selection of probabilistic models to the data. Two assumptions are made

across all models, the first is that the statistical image features can be represented by some

combination of Gaussian, N (µ, σ), distributions, and the second that the distribution of

report words forms a Multinomial, Mult(β). We shall denote D as the data which is a CT

scan combined with a radiology report. In each of the following models L = P (D|Θ) is the

likelihood of this combined data given the model parameters Θ. In all the equations that

follow the notation is consistent.
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• P (Rndf ) is the probability of feature f , in region n in document d. The n and f are

sometimes omitted to indicate a product over features and regions.

• µ is the mean of a normal distribution. This has an index over features, f and processes

k.

• σ2 is the variance of a normal distribution. This also has an index over features, f and

processes k.

• Multinomial distributions over the corpus are given by β. This is indexed by word m

and process k.

• K and M are taken as indexes for processes and terms respectively.

• Ψ is used to denote the derivative of the log gamma function d
dz log(Γ(z)).

In total we study five models. One model is based on a traditional mixture, while the

remainder all incorporate LDA re-sampling.

4.3.1 Mixture Models

The first model is the simplest of all. In this the multinomial and Gaussian distributions are

jointly drawn under a mixture. This means that each Report-Image pair contains only one

topic. This may seem very restrictive, but when using probabilistic models it is important to

consider the simplest approaches to identify model over-fitting. The likelihood for this model

is given in equation (4.1).

L =
∑

k

αk
∏

m

P (Wm|βk)
∏

n

P (Rn|µk, σk) (4.1)

Using a standard variational approach, a bound on the log-likelihood if formed using Jensen’s

inequality over the expectation of the latent variable γdk. This is given in equation 4.2:
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logL =
∑

dkm γdk logP (Wm|βk)
+
∑

dkn γdk logP (Rn|µk, σk)
−∑dk γdk log γdk

+
∑

dk γdk logαk

(4.2)

γdk is a parameter of a discrete variational distribution and taken as the probability that

sample d was generated by mixture distribution k. This is very similar to the EM algorithm

for a mixture model given in section 2.4.1. This bound on the likelihood is then maximised

for all model and latent variables.

The remainder of the models are based on LDA. We shall only give brief details of the

equations for the first three models as similar derivations exist elsewhere ([15], [16]), but as

the Reversed Correspondence-LDA is new we shall give a more thorough explanation.

4.3.2 Joint-LDA

The next model is a joint Gaussian-Multinomial LDA. This is similar to Mixture, but it is

more flexible by allowing each Region and Word to have been generated separately. For each

sample, that is image report pair, a k-dimensional multinomial is drawn from a Dirichlet,

D(θ|α). Then for each region and every word, θ is sampled to give a process Zn for a region

and Zm for a word. The corresponding Region or Word is then generated conditioned on

Zn/m. Thus every region and every word can come from any one of k distinct classes. The

likelihood of a single is given in equation (4.3).

L =
∫

4

∏

m

∑

k P (Wm|Zm = k, β)P (Zm = k|θ)

∏

n

∑

k P (Rn|Zn = k, µ, σ)

× P (Zn = k|θ)P (θ|α)dθ

(4.3)
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Variational inference can again be used to estimate the model parameters. To construct a

tractable bound on 4.3 we will apply Jensen’s inequality twice to a logged version of the

likelihood. Applying it once will bring the log through the integral and introduce the sample

specific latent variable γdk. P (θ|γ) is a variational distribution that has a sample specific

Dirichlet parameter γd. For each sample, d, γd is a vector of k parameters. The log will

now effectively decouple the elements of the likelihood containing Wm and Rn. Applying

Jensen’s inequality for a second time the log will be brought into the summation over k to

break the coupling between the θ. This introduces the two latent variables φndk and ψmdk. In

both cases it is a discrete distribution. φndk is interpreted as the probability that for sample

d region n’s features, f , were generated by the Gaussian distribution defined by process k.

Correspondingly ψmdk is interpreted as the probability that in report d word m was generated

by the Multinomial distribution defined by process k, βmk.

The full bound on the likelihood taken over all sample is given by:

∑

d log[L] ≥ ∑

d,n,k φndk log
[

P (Rnd|µk, σ2
k)
]

+
∫

Θ

∑

d,n,k φndkP (θ|γd) log [θk] dθ

− ∑

d,n,k φndk log [φndk]

+
∑

d,m,k ψmdk log [βmk]

+
∫

Θ

∑

d,m,k ψmdkP (θ|γd) log [θk] dθ

− ∑

d,m,k ψmdk log [ψmdk]

+
∫

Θ

∑

d P (θ|γd) log [P (θ|α)] dθ

−
∫

Θ

∑

d P (θ|γd) log [P (θ|γd)] dθ

(4.4)

By maximising equation 4.4 with respect to all the variables the resulting iterative scheme

can be used by find good estimates of the model parameters.
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1 2 1 1 3
1 2 3 1 3
1 3 1 1 1
1 2 2 2 1
1 1 2 1 1

Tab. 4.1: Example image with the generating process for each region shown

4.3.3 Correspondence-LDA Model

This follows the generative model first given in ([16]). It is an extension of other earlier LDA

models. The idea is that first the image features are generated under a re-sampling model,

then the report terms are sampled using the processes that contributed to image generation.

Hence there is a correspondence between the term generation and image generation. A good

analogy can be given by reference to table (4.1).

This shows a hypothetical image that has been generated by first sampling a Dirichlet(α) to

give a multinomial θ, and then sampling from this multinomial for each region. The number

is each region gives the corresponding chosen k, the generating process. To generate the M

terms, you throw a dart at the image M times. At each throw the dart lands in a region

Ym = n, this region has a process number Zn = k. A term is then generated by sampling the

corresponding multinomial defined by Zn . Thus for popular processes such as 1 (15 out of

25) you are more likely to get terms coming from multinomial βk. The likelihood is given in

equation (4.5). Variational inference can be again used to optimise a bound on equation (4.5).

This introduces three sample specific latent variables, γ, φnk as given before and additionally

λnm. λnm is the probability word m was generated after selecting the process which generated

region n.

L =
∫

Θ

∏

n

∑

k P (Rnd|Zn = k, µ, σ)P (Zn = k|θ)

∏

m

∑

k,n P (Ym = n|N)P (Zn = k|Rnd, θ)

× P (Wm|Ym = n,Zn = k, β)P (θ|α)dθ

(4.5)
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Through the introduction of the latent variables, a bound on the log of equation 4.5 is given

by:

∑

d log[L] ≥ ∑

d,n,k φndk log
[

P (Rnd|µk, σ2
k)
]

+
∫

Θ

∑

d,n,k φndkP (θ|γd) log [θk] dθ

+
∫

Θ

∑

d P (θ|γd) log [P (θ|α)] dθ

− ∑

d,n,k φndk log [φndk]

−
∫

Θ

∑

d P (θ|γd) log [P (θ|γd)] dθ

+
∑

d,k,m ψmdkλnmd log [P (Wd|Yn = m,Zm = k, β)]

− ∑

d,n,m λnmd log [λnmd]

(4.6)

Again, by maximising equation 4.6 with respect to all the variables the resulting iterative

scheme can be used by find good estimates of the model parameters.

4.3.4 Correspondence-LDA with re-sampling feature wise

The likelihood equation (4.7) is identical to that of the first Correspondence Model equation

(4.5), except the order of feature generation (
∏

f ) and the process selection (
∑

k) have been

reversed. Consequently the latent variables λ and φ are four dimensional, the additional

dimension being over features. This does offer a greater flexibility with re-sampling over

regions and features, but with the downside of many additional parameters to estimate.
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L =
∫

Θ

∏

n,f

∑

k P (Rndf |Znf = k, µ, σ)P (Znf = k|θ)

∏

m

∑

k,n,f P (Ym = nf |N,F )

× P (Wm|Ym = nf, Znf = k, β)

× P (Znf = k|Rndf , θ)P (θ|α)dθ

(4.7)

4.3.5 Reversed Correspondence-LDA

This is a new and previously unreported model. It is motivated by the Corr-LDA, except in

this model the terms form the defining part of the data and the images are generated from

the terms. This is a reversal of the original correspondence LDA [16]. In addition there is a

multinomial ν introduced to account for a limited vocabulary. The graphical representation

shown in figure (4.1) summarises the generative process. Individual variables are explained

below.

� � ��� � �
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Fig. 4.1: Generative model for Rev-LDA. Note the fixed prior S on the variances is shaded
to indicate this is static throughout the inference. Point estimates are given for all variables
with square boxes.

In words the generative model is:

• Sample θ ∼ Dirichlet(θ|α)
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• For each of the M words in a report

1. Sample a process Zm ∼Multinomial(θ)

2. Sample a word Wm from a multinomial over the vocabulary conditioned on the

process.

• For each of the N image regions

1. Pick a report word Yn over a multinomial, ν (conditioned on that report).

2. Sample the image features from Gaussian distributions conditioned on the process

that was used to generate the word chosen, Yn.

32Fibrosis Emphysema

Normal1

Fig. 4.2: Example Report

For a similar analogy to that given for the Corr-LDA, consider the toy report given in figure

(4.2). This shows a hypothetical report where all terms (not always the case) have been

sampled. The term subscript indicated the generating processes for that particular term, and

the report specific multinomial ν then dictates the size of the term areas. To generate the

image you would repeatedly throw darts at the report. At each throw a process Zm = k

is determined by the subscript of the term area where the dart lands. This k is then taken

as the process which generates the current image region. Thus the larger the term area the

more image regions will be generated by that terms process. The likelihood of this model is

given by equation (4.8).
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L =
∫

Θ

∏

m

∑

k P (Wm|Zm = k, β)P (Zm = k|θ)

∏

n

∑

k,m P (Yn = m|Wd, ν)

× P (Rn|Yn = m,Zm = k, µ, σ)

× P (Zm = k|Wm, θ)P (θ|α)dθ

(4.8)

We have now detailed 5 alternative models by which the image and report data could have

been generated. To compare these models we need to first estimate the model parameters

for each. In terms of the total number of parameters the 5 models can be ordered as such:

• Mixture

• Joint-LDA

• Correspondence-LDA

• Reversed Correspondence-LDA

• Correspondence-LDA with re-sampling feature wise

Once we have estimated the model parameters we must then evaluate the likelihood. For

example in the Reversed Correspondence-LDA model this requires integration of equation

4.8. As was discussed in section 2.3.7 this is seldom possible analytically.

To perform the parameter estimation in all the above models we shall use a variational EM

approach. To recap from section 2.3.2 the variational EM approach will give a point estimate

of the posterior distribution. By using Jensen’s inequality of section 2.1.4, f(E[x]) ≥ E[f(x)],

over the latent variables, we can give a lower bound on the integral that can be evaluated.

This is then maximised over the model parameters. For the total data log-likelihood in

the Rev-LDA model this bound is given in (4.9). The latent and model parameters are

then iteratively updated by using the following equations. This is a kind of Expectation
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Maximisation algorithm. There is no closed form update for α so a second order Newtonian

method is used.

∑

d log[L] ≥ ∑

d,m,k ψmdk log [βmk]

+
∫

Θ

∑

d,m,k ψmdkP (θ|γd) log [θk] dθ

+
∫

Θ

∑

d P (θ|γd) log [P (θ|α)] dθ

− ∑

d,m,k ψmdk log [ψmdk]

−
∫

Θ

∑

d P (θ|γd) log [P (θ|γd)] dθ

+
∑

d,n,m λnmd log [P (Yn = m|νd)]

+
∑

d,k,m ψmdkλnmd log [P (Rd|Yn = m,Zm = k, µ, σ)]

− ∑

d,n,m λnmd log [λnmd]

(4.9)

E-Step:

ψmdk ∝ βmk exp(Ψ(γdk) − Ψ(
∑

k γdk))

exp(
∑

n λnmd log [P (Rnd|Yn = m,Zm = k, µ, σ)])

λnmd ∝ P (Yn = m|Wd)

× exp(
∑

k ψmdk log [P (Rnd|Yn = m,Zm = k, µ, σ)])

γdk = αk +
∑

m ψmdk

(4.10)

M-Step:
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µfk =
∑

d,n,m ψmdkλnmdRndf
∑

d,n,m ψmdkλnmd

σ2
fk =

∑

d,n,m ψmdkλnmd(Rndf−µfk)2
∑

d,n,m ψmdkλnmd

βmk ∝
∑

d ψmdk

νdm ∝ ∑

n λnmd

αnew = α−H(α)−1g(α).

(4.11)

4.3.6 MAP Solution

Solving for the Maximum a posteriori P (Θ|D) ∝ P (D|Θ)P (Θ) problem we introduce priors

over the model parameters. MAP solutions are scale dependent, but as we have normed the

image data to have zero mean and unit variance an identical prior can be used for all the

features. The most general prior over the variance which maintains an easy quadratic form

for the update of σ is:

P (σ) =
1

Z(σ)
exp(s1/σ

2) exp(s2/σ)σs3

With one of s1/2 = 0, this is in fact a restatement of the Gamma distribution. With a negative

choice of s1 and s2, this gives bounded values, asymptotic to unity and passing through the

origin. A negative choice of s3 changes the asymptote to zero, and gives a convergent integral,

hence proper prior. This prior will penalise under fitting (small σ) and over fitting (large

σ) in the model. The form of Z(σ) is complex but does not need evaluating in any of the

calculations. In all the models we used the prior corresponding to s1 = s2 = s3 = −1, this is

by no means optimal and indeed could be optimised by a cross-validation of the likelihoods.

For the model parameter β we use the empirical Bayesian smoothing outlined in ([16]). Priors

for α and µ are assumed uniform. It is interesting to point out that for a single process, all

of the above models are in-fact identical. In generative terms, for a single example, the
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differences between models are summarised as:

• Mixture. The Image/Report pair comes from a single process.

• Joint-LDA. All regions and terms can come from any process - linked by a multinomial.

• Corr-LDA. Regions can come from any process - terms come from a selection of those

generating the image.

• Rev-LDA. Terms can come from any process - regions come from a selection of those

generating the report.

4.4 Results

To compare models a hold out cross validation was performed. This involves retaining a

subset of the data, running the update equations on the remaining data until convergence,

and then calculating the average held-out sample log-likelihood. To remove any issues of

dependence between data the held-out samples were chosen to be those from an individual

patient. So for each model and number of processes there was a 24 fold cross validation. A

plot of the results for 4× 4 and 16× 16 blocks can be seen in figures(4.3-4.4). The likelihood

values for the smaller blocks are taken across ∼ 16 times as many regions which explains the

difference in magnitude. As can be seen Joint-LDA and Corr-LDA significantly out perform

the other models. Corr-LDA-Feat seems too complex and will over fit, where as LDA-Rev

is too restrictive as the ratio of terms to regions is very low. The Mixture is too basic, only

allowing one process per sample. We shall present results from the Corr-LDA as it is a richer

model than Joint-LDA.

A demonstration of the results will be given with reference to figure (4.5). This patient is

suffering from severe lung disease, there is a large area of fibrosis (denser tissue) in the right

lung interspersed with patches of Emphysema (essentially air-sacs, very dark in appearance).

This image was removed from the training set and classified (by process) using the model

parameters. Figures (4.6-4.7) show the decomposition of figure (4.5) into 8 processes, although

8 processes is not the optimal number it is sufficiently high to demonstrate the results.
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Fig. 4.3: Comparison of MAP Log-Likelihoods for different models and 4 × 4 region size

Corresponding to this decomposition are the multinomial probabilities over words given in

table 4.2. First consider k=3 and k=6, from table 4.2 we see that these are principally

Emphysema, in figure 4.6 we see that for k=3 this matches the emphysematous areas in

the original CT scan very well. Fibrosis is demonstrated by k=4 and k=5 and to a lesser

extent k=2. There is a very interesting decomposition between k=4 and k=5, while both

being fibrotic k=4 would be classed as Ground Glass, a subtype of Fibrosis. The remaining

processes account for the normal tissue. For comparison figure 4.8 shows the results of

supervised classification for a CT scan. A selection of expertly labelled data was used to train

a Support Vector Machine with a linear kernel. There is a clear correspondence between the

results of the supervised SVM method, with the results of unsupervised learning given in this

paper.
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Fig. 4.4: Comparison of MAP Log-Likelihoods for different models and 16 × 16 region size

4.5 Conclusions and future work

In an entirely unsupervised manner, we have identified sub-types of lung disease and main-

tained a correspondence between these and established classes. This gives clearer indications

of classes to use for automated diagnosis of disease. Note that we are estimating the pa-

rameters of the posterior distributions using the a variational method. At each stage when

we apply Jensen’s inequality we are stretching the the bound on the true likelihood. The

algorithm only converges to local minima based on the bound, so we have no measure of

the universal optimality of our solution. Other techniques, such as Monte Carlo methods or

Expectation Propagation ([62]), exist and using these may provide superior solutions to those

given above.
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Process Normal Fibrosis Emphysema

k=1 0.860895 0.13816 0.000945312
k=2 0.622918 0.375928 0.00115402
k=3 0.099295 0.00015781 0.900547
k=4 0.115884 0.884013 0.000103796
k=5 0.111384 0.888615 2.81294e-07
k=6 0.161668 2.69409e-07 0.838332
k=7 0.848397 0.000679466 0.150924
k=8 0.991839 0.000103146 0.0080576

Tab. 4.2: Table of smoothed βmk for 8 processes in the 4x4 block data set, using the Corr-LDA
model. Significant probabilities are shown in bold.
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Fig. 4.5: Original CT Scan, Right/Left lung convention.
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Process 1 Process 2

Process 3 Process 4

Fig. 4.6: Probabilities for membership to processes [1-4] for figure (4.5) in the 4x4 Corr-LDA
model. Shown as a grey scale with white ↔ P = 1 and black ↔ P = 0.
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Process 5 Process 6

Process 7 Process 8

Fig. 4.7: Probabilities for membership to processes [5-8] for figure (4.5) in the 4x4 Corr-LDA
model. Shown as a grey scale with white ↔ P = 1 and black ↔ P = 0.
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Fig. 4.8: SVM Classification of figure (4.5) for three classes using 4 × 4 regions sizes
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Chapter 5

A Correspondence Model for the

Joint Estimation of Motif and

Gene Expression Data

5.1 Abstract

In this chapter we propose a generative probabilistic approach for the joint modelling of two

types of data: gene expression values from microarray experiments and motif data describ-

ing binding site sequences in the upstream regulatory regions of genes. We compare four

different strategies for this purpose, evaluating the performance of these algorithms on a

microarray dataset for Saccharomyces Cerevisiae. We find correspondence models based on

Latent Dirichlet Allocation are more appropriate representations to model the probabilistic

relationship between motif abundance and gene expression levels.

5.2 Introduction

Currently many types of data are being generated which give different insights into the

various functions of a genome. This includes continuous numerical data from microarray
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experiments, discrete numerical sequence data and graphical information about regulatory

networks. Models which successfully integrate these disparate data sources would be expected

to give more insight into the underlying science than models which only utilise one type

of data. This has motivated the development of new data fusion techniques.For example,

Lanckriet et al [52] have successfully used kernel-based methods for this purpose. Microarray

data can be handled using standard functional kernels (e.g. a linear kernel), sequence strings

can be handled using string kernels and network (graph) information can be handled using a

diffusion kernel [74]. Different types of data can therefore be incorporated into the model and

prediction can be achieved using semi-definite programming to optimise the model parameters

[52].

Rather than kernel-based methods, an alternative is to use generative probabilistic models.

That is, models which could be used to produce the data. In this paper we will show that

correspondence models of this type [15, 16] are superior at jointly modelling microarray gene

expression data and motif data representing regulatory subsequences in the promoter regions

of genes. We will show that such models can lead to prediction of gene expression levels

from motif data or determine the relevance of particular motifs from a set of microarray gene

expression ratios.

The objective of this work is to construct a model for the joint estimation of motif and gene

expression data. The approach we discuss can also be extended to include numerical data

beyond motifs, for example, expression values from regulator genes. In line with previous

models proposed by the authors [70], we will use the word process to denote a set of assumed

functionally related samples or genes.

In section 5.3 we introduce the data set. In section 5.4 we introduce the models and explain

the assumptions behind these. In section 5.5 we describe two Correspondence models and in

section 5.6 we will report numerical results. In section 5.7 we discuss these results and the

extended framework enabled by this approach.
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Fig. 5.1: Diagrammatic representation of the estimation of gene expression from motif data.

5.3 The Data Used

The data set we shall use was originally published in [36]. This a collection of expression values

for the yeast Saccharomyces Cerevisiae across 173 experimental conditions. A summary of

these experiments is given in table 5.1.

A single sample in the data set corresponds to a single gene and is made up of a pairing of

• 173 microarray expression values across the experiments listed in table 5.1.

• X motif counts.

The yeast cells are subject to 15 different classes of experimental condition. Joint modelling

of the expression and motif structure
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Exp IDs Experimental Condition

1-29 Heat shock stress
30-35 Combined heat shock and osmolarity stress
36-45 Hydrogen Peroxide Stress
46-54 Superoxide generating drug Menadione Stress
55-69 Dithiothreitol (Disulfide-reducing agent) stress
70-77 Diamide (Sulfhydryl-oxidizing agent) stress
78-90 Hyperosmotic and hypoosmotic shock
91-95 Amino acid starvation stress
96-105 Nitrogen depletion stress
106-112 Diauxic Shift
113-134 Progression into stationary phase
135-139 MSN2/MSN4 and YAP1 deletion mutants with heat shock stress
140-144 MSN2/MSN4 and YAP1 deletion mutants with peroxide stress
145-147 MSN2/MSN4 and YAP1 over expression mutants
148-160 Steady state growth on alternative carbon sources stress
161-173 Steady state growth at constant temperatures

Tab. 5.1: Summary of the experimental details

5.4 The Models Used

The models we will consider are all closely related to mixture models [59].

We will assume that gene expression values are distributed under an experiment specific

Gaussian distribution. For the motif counts we will form two classes of model: we assume

either (a) a motif specific multinomial distribution or (b) a motif specific Poisson distribution.

For (a) the motifs derive from a string with probabilities determined by a multinomial. As

a trivial example, suppose we had five possible motifs for gene g, labelled 1 to 5, and the

following string a = (4, 4, 2, 1, 4, 1, 4, 4) gives the occurrence of each in the upstream sequence,

then the associated probability is
∏8
m=1 P (Mmg = am) where P (Mmg = am) is a multinomial

and Mmg is the index of the mth motif in gene g. In this case the overall counts for each

motif would be b = (2, 1, 0, 5, 0). For choice (b) we use the overall counts and the overall

probability is
∏5
n=1 P (Cng = bn) where P (Cng = bn) is a Poisson distribution. Under the

multinomial model we would only take account of motifs which are present but with the

latter model we also take into account motifs which are absent (0 in b), sometimes refereed

to in probability theory as the null event. Under the normal distribution, given expression

Edg for gene g over experiment d we have:
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P (Edg|Θ) ∼ N (µ, σ) =
1√

2πσ2
exp

(

−(Edg − µ)2

2σ2

)

(5.1)

where Θ represents the set of distribution parameters, µ the mean and σ2 the variance. The

Poisson and multinomial distributions are then:

P (Cng|Θ) ∼ Poisson(β) =
exp (−β)βCng

Cng!
(5.2)

P (Mmg|Θ) ∼Multi(η) = ηm (5.3)

where Cng =
∑

m δ(Mmg = n), β is the Poisson mean and ηm is the multinomial parameter.

These two assumptions for the motif counts will lead to different models. Also we will arrive

at different models depending on our additional assumptions about the relationship between

motifs and gene expression values. For an individual sample these assumptions will be about

how expression values are related to each other, how motif counts are related and how the

motifs and expression values are both related.

A process is defined by the set of model parameters indexed by a specific process number k

µgk, σ
2
gk and βnk or νmk (depending on the model assumptions).

In this paper we will consider four principal models (which we identify as CorrM2E, CorrE2M,

JMM and JMM-LDA for our subsequent discussion). For the first (CorrM2E) gene ex-

pression is assumed generated by the existence of certain motifs in the promoter region accord-

ing to our standard understanding of the biology. However, there is usually more information

in the set of gene expression measurements than the set of motifs, so we also consider the

inverse (CorrE2M) in which gene expression data is used to indicate the relevance of par-

ticular motifs. We will also consider two further models (JMM and JMM-LDA) in which

both expression and motif are assumed generated from common underlying processes thus

with an implicit connection of motif to expression rather than a direct relation.
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In summary:

• CorrM2E (Correspondence-Model: Motif to Expression): each motif is, in

turn, generated by picking a process. The expression values are then generated by se-

lecting a processes from the ones originally used to generate the motifs. Thus expression

generation is conditioned on the motif processes.

• CorrE2M (Correspondence-Model: Expressions to Motifs): each expression

value is, in turn, generated by picking a process. The motifs are then generated by

selecting a processes from the ones originally used to generate the expression values.

Thus motif generation is conditioned on the expression processes.

• JMM (Joint Mixture Model): the motifs and expression values are conditioned on

a single process.

• JMM-LDA (Joint LDA Mixture Model): each motif and each expression value

can potentially derive from any process. The motif and expression processes are not

explicitly linked and so could conceivably be conditioned on different processes.

The simplest of these models is a joint mixture model (JMM). The likelihood of a single

sample, corresponding to gene g, with expressions Eg and motif counts Cg, is given in

equation 5.4.

P (Eg,Cg|Θ) =
∑

k

αkP (Eg,Cg|Θk) (5.4)

where Θ represents the model parameters. By writing G as the whole data set, and using the

standard variational approach shown in section 2.3.2 the overall log-likelihood can be lower

bounded. This is given in equation 5.5:
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logP (G|Θ) =
∑

g log(
∑

k αkP (Eg,Cg|Θk))

=
∑

g log(
∑

k αk
∏

d P (Edg|Θk)
∏

n P (Cng|Θk))

≥∑gk γgk log (αk
∏

d P (Edg|Θk)
∏

n P (Cng|Θk)/γgk)

(5.5)

Where
∑n

k=1 γk = 1 and γk is a latent variable. This lower bound is then maximised over

all latent and model variables using an iterative EM-type algorithm. For JMM-LDA the

likelihood is:

P (G|µ, σ, β, α) =

∫

P (Cg|β, θ)P (Eg|µ, σ, θ)P (θ|α)dθ (5.6)

As P (Cg|β, θ) and P (Eg|µ, σ, θ) can be decoupled under a log, a similar approach to that

given in [70] or [15] can be used to generate a lower bound on 5.6. Once again this is then

maximised over all latent and model variables using an iterative EM-type algorithm.

5.5 A Correspondence Model

The first correspondence model we describe (CorrM2E) is based on the correspondence LDA

model of Blei et al [15]. In this model there is sequential generation of the data. First the

discrete motif data is generated and then the continuous gene expression data. Under the

Poisson assumption in (5.2) the model can be summarised as follows:

1 Sample θ ∼ Dirichlet(θ|α)

2 For each motif n:

(a) sample a process zn ∼Multi(Θ)

(b) sample Cng ∼ P (Cng|zn, β) conditioned on process zn (using (5.2))
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Fig. 5.2: A graphical representation of the generative correspondence model CorrM2E. We
are performing a Maximum Likelihood estimate of the model parameters and so all such
variables are represented by a square node.

3 For each experiment d:

(a) sample Yd ∼ Uniform(1, . . . , nomotifs)

(b) sample Edg ∼ P (Edg|Yd, z, µ, σ) conditioned on process zYd
.

where nomotifs is the number of motifs. This sampling process is summarised in Figure 5.2.

For the multinomial assumption given in equation (5.3) this procedure is the same except Cng

is replaced by Mmg and n by m throughout. For CorrE2M the roles of motif and expression

are reversed, with the assumption then being that the defining part of the data are the gene

expression patterns. We will describe this model further in section 5.6.3. For CorrM2E and

using the Poisson assumption given in (5.2), the likelihood of G as:

P (G|µ, σ, β, α) =
∫

P (Eg,Cg|µ, σ, β, θ)P (θ|α)dθ

=
∫

P (Cg|β, θ)P (Eg|µ, σ, θ,Cg)P (θ|α)dθ

(5.7)
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where, letting θk = P (Zn = k):

P (Cg|β, θ) =
∏

n P (Cng|β, θ)

=
∏

n

∑

k θkP (Cng|β, Zn = k)

(5.8)

and:

P (Eg|µ, σ, θ,Cg) =
∏

d P (Egd|µ, σ, θ,Cg)

=
∏

d

∑

k,n P (Egd|µ, σ, Yd = n,Zn = k)

×P (Yd = n|Cg)P (Zn = k)

(5.9)

A tractable lower bound on the likelihood in equation (5.7) can be given by using Jensen’s

inequality three times in succession. This introduces three latent variables γgk, Qngk and

Rdng. These variables have the following interpretation. γgk is a k-dimensional gene specific

Dirichlet parameter (normalised γgk gives the expected fraction of selections giving process

k). Qngk is the probability that the nth motif count of gene g was generated by process k, and

Rdng is the probability that the dth expression (from experiment d) of gene g was generated

after selecting the nth motif. The lower bound is iteratively maximised using an EM-type

algorithm based on the following set of update equations:
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µdk =
∑

g,n QngkRdngEdg
∑

g,n QngkRdng

σ2
dk =

∑

g,n QngkRdng(Edg−µdk)2
∑

g,n QngkRdng

βnk =
∑

g QngkCng
∑

g Qngk

Rdng ∝ exp [
∑

kQngk logP (Edg|Yd = n,Zn = k, µ, σ)]

×P (Yd = n|Cg)

Qngk ∝ exp [
∑

dRdng logP (Edg|Yd = n,Zn = k, µ, σ)]

×P (Cg|Zn = k, βnk) exp [Ψ(γgk) − Ψ(
∑

k γgk)]

γgk = αk +
∑

nQngk

αnew = α−H(α)−1g(α).

(5.10)

where H(α) is the Hessian and g(α) is the gradient, calculated as derivatives of the likelihood

expression (see [15] or [70] for details). The special form of the Hessian means the inverse

Hessian does not need to be evaluated explicitly (see Appendix of Blei et al [15] for details).

So far we have discussed a maximum likelihood (see section 2.1.6) approach with a uniform

prior implicitly assumed. However, we can adopt a non-uniform prior on the model param-

eters (see [70] for examples). This will act as a smoother and go some way to avoiding

over-fitting. A fully Bayesian approach would be to treat the model parameters as random

variables, rather than point estimates. A variational EM would not be sufficient in this case

a MCMC or variational Bayes approach to parameter estimation would be needed. In this

case MCMC would be computationally infeasible.

A number of choices are possible but a reasonable priors on µ and σ2 would be P (µ) ∝ N(0, 1)

and an Inverse Gamma probability distribution respectively.
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5.6 Experimental Results

For our experiments we will use the dataset of Gasch et al [36]. The gene expression mea-

surements (which are log2 of the expression ratios) were taken over a total of 1411 genes

across 173 experiments. They derive from cDNA microarray experiments recording response

to environmental stresses for the organism S. Cerevisiae. This dataset has been supplemented

with 354 binding site motifs by Middendorf et al [61] using 500 bp sequences drawn from the

Saccharomyces Genome Database (SGD) and filtered for motifs using the PATCH tool in the

TRANSFAC database [88]. From these we selected 200 motifs by discarding those which had

less than 10 occurrences in the data. Compared to Middendorf et al [61] we use continuous

rather than discretized expression data.

5.6.1 Model Comparison

First we need to determine which of the various models gives the best generalisation in a

likelihood sense. In Figure 5.3 and 5.4 we have performed a 5-fold cross validation study of

the the logged likelihood versus the number of processes. During the cross validation 20%

of the data is retained during parameter estimation and then the average likelihood of the

left-out data is calculated. This involves approximating the likelihood in equation (5.7) by

replacing the integration by a summation with multiple sampling of θ. This cross validation

study also indicates what a reasonable choice for the number of processes would be. We have

used a maximum likelihood approach (a uniform prior, hence the model overfits the data

after passing through a peak). In the experiments conducted by Gasch et al [36], 16 different

types of environmental stress were used (give in table 5.1). However, some of these stress

modes are likely to be similar in action. Consequently, the peak at 10 processes could well

indicate the number of processes required to adequately model this set of stress responses.

These two figures indicate that the correspondence models outperform the mixture models.

In the next section we will therefore focus on the correspondence models. Apart from a

comparison between models we also compared performance against a null model and nearest

neighbour models. For the null model we used the same data but we assume that only a

single process is used. In this case, with the choice of a single process only, all the models
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Fig. 5.3: Log Likelihood (y-axis) versus number of processes (x-axis) using a model based on
the Poissonian distribution of the motif counts, equation (5.2).
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Fig. 5.4: Log Likelihood (y-axis) versus number of processes (x-axis) using a model based on
the multinomial distribution for the motifs, equation (5.3).
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CorrM2E, CorrE2M, JMM and JMM-LDA are identical. For CorrM2E the predicted

expression value is the average expression value, taken across the samples, for the given gene.

For CorrM2E the prediction is the average motif count, taken across the samples, for the

given motif. This is a extremely naive model but it gives a reasonable minimum benchmark.

Using 5-fold cross-validation the log-likelihood calculated as −496.07±2.58 in Figure 5.4 with

the multinomial assumption and −325.95 ± 2.75 in Figure 5.3 with a Poisson assumption.

Relative to this benchmark the use of a Poisson model has a gain of over 40 points on the

log-scale. The multinomial model has less of a gain but it is still notably better than using an

averaged expression value. For this reason we will concentrate on use of a Poisson distribution

in the following.

As an alternative, we also investigated two k nearest neighbour models, estimating the ex-

pression value of a gene using the closest k genes based on motif profile. For the first model,

the k nearest neighbours were found using the Euclidean distance between the given gene’s

motif profile (a string of integers for motif counts) and the motif profiles of other genes.

The second model was probabilistic. Thus, under a Poissonian model, these k nearest motif

profiles are chosen such that, if their values are taken as the Poisson parameters, they would

maximise the likelihood of the given gene’s profile.

The likelihood curves for both these models are given in Figure 5.5. As we increase k the

likelihood curves will tend to the value given in the null model discussed above as the null

model is in a sense a nearest neighbour methods in which you consider all neighbours. Though

using the profiles of a set of nearest neighbours could be expected to give a better model than a

model using the profiles for all genes, such nearest neighbour models can be adversely affected

by the occurrence of very different gene expression profiles associated with very similar motif

profiles (illustrated later in Figure 5.14).

So far we have shown that the Correspondence models perform better than similar simpler

models and naive approaches. This is only a relative measure of performance and does not

indicate an absolute measure of success.
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Fig. 5.5: Log Likelihood (y-axis) versus number of neighbours, k, (x-axis) for estimated
expression values based on averaging of expression over the k nearest motif profiles. The
solid curve is for the probabilistic model mentioned in the text and the dashed curve is
for the non-probabilistic model based on use of a Euclidean distance to determine nearest
neighbours.
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Fig. 5.6: The means µdk for the Motif to Expression correspondence model CorrM2E. The
x-axis gives the d = 1, . . . , 173 experiments for processes k = 1, . . . , 10.

5.6.2 The Correspondence Model CorrM2E

To use the CorrM2E for prediction we left out 10% of the whole data set. Then using the

variational EM update equations 5.10 we estimated the model parameters on the remaining

90%. Figure 5.6 gives the means µdk across the d = 1, . . . , 173 experiments of Gasch et al

[36], for all k = 1, . . . , 10 processes. Similarly the poisson model parameter β is given in 5.7.

Using the estimated model parameters, µ, β, σ2 and α we can take the motifs from left out

10% of data and try to predict the corresponding expression values. To do this prediction we

need to compute the density

P (Egd|µ, σ, θ,Cg) =
∑

k,n

P (Egd|µ, σ, Yd = n,Zn = k)P (Yd = n|Cg)P (Zn = k|α,Cng)
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Fig. 5.7: The Poisson mean βmk for the Motif to Expression correspondence model
CorrM2E. The x-axis gives the m = 1, . . . , 200 motifs for processes k = 1, . . . , 10.
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Fig. 5.8: Predicted density for Eg given the motifs.

originally given in equation 5.9. P (Zn = k|α,Cng) is calculated by using Bayes Rule. The

resulting density P (Egd| . . . ) will be a mixture distribution like that given in figure 5.8, we

shall therefore take the mode of this mixture as the prediction.

In figure 5.10 we give a scatter plot of the predicted expression values against the actual

values for the held out 142 genes across each of the 173 experiments. A histogram of the

corresponding correlation coefficients for predicted vs actual is given in figure 5.10. From

these two plots it is clear that the model has very weak predictive powers. We shall now

investigate why, despite having the highest cross validated likelihood the model gives poor

results.

Investigation

Figure 5.11 is a plot of the normalised latent variable γ for each held out gene. Recall, γg is

a sample specific Dirichlet parameter, and so on normalisation this will give us the expected

number of times process k was selected in generating the motif counts for gene g. From

figure 5.11 we see that there is substantial mixing between processes, and very rarely is any

particular held out gene strongly associated with a single process. This indicates that there

are only weak clusters within the motif data. In figure 5.12 we have plotted the relative

Poisson means for each experiment across the 10 processes. This is to indicate the difference

between the processes at the motif generation level. A number of processes seem to indicate

differences but these will probably be drowned out by the dominant motifs (see the peaks of
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Fig. 5.9: Scatter plot giving the predicted value (x-axis) versus the actual value (y-axis)
across 142 genes from 1411, with 173 experiments per gene.
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Fig. 5.10: A histogram giving the number of occurrences (y-axis) versus correlation coefficient
(x-axis) for 142 randomly selected held-out genes from 1411. The correlation coefficient is
between predicted and actual gene expression values.
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Fig. 5.11: Normalised bar-plot of the latent variable γ for 142 held out genes from 1411, with
173 experiments per gene.

figure 5.6 for dominant motifs).

There are a number of possible reasons for poor predictive performance, some of which we

list below.

• The motif data is incomplete.

• Subtle changes in motifs which indicate expression are drowned out by noise from

uninformative motifs.

• Motif data is unrelated to expression data.
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Fig. 5.12: The relative (normalised across processes) Poisson mean βmk for the Motif to
Expression correspondence model CorrM2E.
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Fig. 5.13: Two examples showing two very similar motif profiles.

As we are limited by the original data set, and also computationally limited we shall ignore

the first point. We shall also discount the last point as without that there is not basis

for investigation. We shall concentrate on the second point. By writing corr(Ea, Eb) and

corr(Ca, Cb) as the pairwise (gene a to gene b) correlation between expressions and motifs

respectively, we searched through the full set of genes to find

maxa,b||corr(Ca, Cb) − corr(Ea, Eb)||

The plot of the motifs for each of these genes is given in figure 5.13, and the corresponding

expression profile is given in figure 5.14. As can be seen the motif profiles are very very similar,

and certainly within the framework of a probabilistic model (like the CorrM2E) would

appear similar in a distributional sense. But they have virtually antisymmetric expression

profiles.

In the publication of Middendorf et al [61] they achieve some level of success in held out

prediction on the same data set. Their approach to prediction was to train alternating

decision trees. A small section of the leaf nodes of one of their decision trees is given in

figure 5.15. The node in the bottom left is splitting on the presence / absence of motif

MY$CYC1 16, just this single motif makes the difference between an up regulation of 2.5
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Fig. 5.14: Expression profiles for two examples. Subtle differences in the set of motifs in
5.13 can lead to very different expression profiles. In 5.13 the two sub figures show two very
similar motif profiles. However, the derived expression profiles are very anti-correlated. Note
that these profiles come directly from the data and are not derived from the algorithm.

or a down regulation of −1.3. In other words even a motif count of 1 for MY$CYC1 16

will switch expression from substantially up to substantially down. The probabilistic models

given above will always struggle to give accurate predictions if this is really the relationship

between motifs and expressions. A proposed model would have to be more complex and have

greater non linearity to be rich enough to model these details.

Mixture Fitting

In this section we shall not perform prediction, but we will see how well CorrM2E jointly

models the data. We are in a sense finding the best combination of processes to simultaneously

fit the 200 motif counts and 173 expression values for a given gene. This fitting can be done by,

for each held out gene run the update equations (from equation 5.10) for the latent variables.

That is gamma, Q and R. Figure 5.16 gives a normalised plot of the resulting γ. Already we

can a see much stronger clustering than we saw for prediction (see figure 5.11). This shows

that there exists far more structure in the expression profiles than in the motifs counts.

To illustrate the idea of the mixture fitting, in Figure 5.18 we give an example in which the
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Fig. 5.15: An example subsection of the decision trees published in Middendorf et al [61].

probability of membership of 7 processes is effectively zero and the set of expression values

for the given gene (SRM1) can be represented by three processes.

Thus for experiment d we obtain a mixture density with means µdk and standard deviations

σdk taken over those k for which normalised γgk is non-zero. For experiment d = 127 in

Figure 5.18 we illustrate this mixture density in Figure 5.19. The reason there exists a three

component mixture, and rather than a single component which is closest to the actual value

is two fold. Firstly we are simultaneously fitting a mixture to the motifs, which will add

weight to some processes, and secondly the Dirichlet model parameter α will also influence

which processes are selected.

In Figure 5.18 we note that the bottom process is a reasonable representation of expression

(the solid and dashed curves are fairly aligned). The middle process appears to be a poor

representation: in fact, the predicted and actual expression curves appear anti-correlated in

the region of experiments 90-140. However, in Figure 5.19 we see that the middle process

appears with an associated large variance. We use a mixture Φ =
∑

k pkN (µdk, σdk) where pk

represents the probability of process membership (normalised γgk) and the fitted expression

value will taken as the mode, or maximum value achieved within this distribution.
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Fig. 5.16: Reordered normalised bar-plot of the latent variable γ for 142 held out genes from
1411.
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Fig. 5.17: The means µdk for the Motif to Expression correspondence model CorrM2E. The
x-axis gives the d = 1, . . . , 173 experiments for processes k = 1, . . . , 10.
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Fig. 5.18: In this case for each process the model samples with a probability (normalised
γgk) of membership of 0.18 for the top process, 0.31 for the middle process and 0.49 for the
bottom process. Along the x-axis we have the experiment number d. The solid curve gives
the actual expression values for the hold-out gene (SRM1) and the dashed curve would be
the fitted value were expression represented by this process only.
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Fig. 5.19: Mixture density derived for experiment 127 in Figure 5.18. The curve derives from
µdk and standard deviations σdk for the given experiment d = 127 and the three process k.
The solid upper circle denotes the actual expression value and the lower three stars are the
associated means for the top (left star), middle (right star) and bottom (middle star) process
in Figure 5.18.
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Fig. 5.20: A histogram giving the number of occurrences (y-axis) versus correlation coefficient
(x-axis) for 142 randomly selected held-out genes from 1411. The correlation coefficient is
between predicted and actual gene expression and the prevalence of correlation scores near
0.8 indicates reliable prediction.

Using the mode and fitting the expression value on 142 held-out genes from 1411 we get the

distribution of correlation coefficients given in Figure 5.20. This is for comparison to figure

5.10 for the predicted case.

To visually indicate the extent of correlation between fitted and actual we give a scatter plot

in Figure 5.21 across these 142 genes. In Figure 5.22 we give an illustration of fitted versus

actual gene expression on three hold-out genes using CorrM2E.

In Figure 5.23 we give the β spectrum across the 10 processes and 200 motifs. Since β in

(5.2) gives the mean and variance of the distribution, the curves indicate the average motif

profile for that process. One motif is observed to be dominant in all processes.
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Fig. 5.21: Scatter plot giving the fitted value (x-axis) versus the actual value (y-axis) across
142 genes from 1411, with 173 experiments per gene.

5.6.3 The Correspondence Model CorrE2M

We can also use the Correspondence model to predict relevance of certain motifs given gene

expression data. As an illustration, in Figure 5.24 we give an example in which the algorithm

draws from three processes to model the actual motif profile given in the top subplot.

5.7 Conclusion

We have proposed a framework for the joint modelling of microarray gene expression and

motif data. In terms of practical applications, accurate prediction of gene expression means

from the motif structure does not seem easy within a probabilistic framework. Indeed the

failure to predict expression could be used as a starting point for iterative refinement of

a procedure to better capture the motif structure [71]. The comparisons in Figures 5.3

and 5.4 suggests that correspondence models work better than standard mixture models.

Furthermore this correspondence framework can be readily extended to handle other types

of data. For example, rather than motifs, we may have knowledge about which parent genes
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Fig. 5.22: Three examples of fitted (dashed curve) versus actual (solid curve) expression
values for single held-out genes in the dataset. These genes are RPL7A, NTH1 and GAD1
respectively.
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Fig. 5.23: The Poisson parameter β for the Motif to Expression correspondence model
CorrM2E (note that the scales differ in subplots). One motif (peak) in particular appears
significant in all processes.
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Fig. 5.24: For CorrE2M the top subplot shows the actual motif count and the lower three
subplots give the principal three processes (probabilities greater than 0.1) from which the
algorithm samples in order to predict the motif structure. The probabilities of sampling from
these three processes are 0.19,0.14 and 0.31 in descending order.
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regulate a particular gene g. In equation (5.7) we would use G = (Eg, Pg) with Pg the parents.

This leads to a corresponding model for integrating knowledge about regulons into the model.

We regard this study as a preliminary step toward construction of a more complex generative

probabilistic model for incorporating gene expression, motif and other data types. However,

some conclusions already emerge. For example, the likelihood curves in Figures 5.3 and

Figures 5.4 have a higher peak for CorrE2M than CorrM2E. This reflects the fact that

there is higher information content in expression data from microarray experiments than

there is in the motif data. For the CorrM2E model, expression prediction is limited by

shortcomings in the motif detection algorithm, because the same transcription factor can

simultaneously inhibit expression with one gene while enhancing expression of another and

because expression is dependent on subtle differences in the motif structure (cf. Figure 5.14)

and location. Of course, probabilistic models are not a unique approach to this problem and

one could use established regression methods for prediction. Nevertheless, the probabilistic

approach outlined is very flexible since we can investigate prediction of expression from motif

data, or indicate the relevance of various motifs given expression data or incorporate other

types of data.
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Chapter 6

Identification of Prognostic

Signatures in Breast Cancer

Microarray Data Using

Probabilistic Techniques

6.1 Abstract

In this chapter we will apply a new probabilistic data analysis technique (Latent Process De-

composition) to four recent microarray datasets for breast cancer. As this is a probabilistic

technique it has a number of advantages over standard hierarchical cluster analysis. These

include: An objective assessment of the optimal number of sample or gene clusters in the

data via likelihood comparison, an natural inbuilt penalisation of over complex models and a

common latent space of explanatory variables for samples and genes. This analysis provides

a clearer insight into these datasets, enabling assignment of patients to one of four principal

processes. Each of these has a distinct clinical outcome. One process is indolent and asso-

ciated with under-expression across a number of genes associated with tumour growth. One

process is associated with over-expression of GRB7 and ERBB2. The most aggressive process

is associated with abnormal expression of transcription factor genes, including members of
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the FOX family of transcription factor genes, for example. This work was published in -

Journal of the Royal Society Interface, 2005, [20].

6.2 Introduction

Evidence from epidemiological studies, analysis of tumour progression and variability in re-

sponse to treatment all indicate considerable diversity among human breast cancers. This

view is supported by various independent microarray studies [25, 40, 41, 68, 77, 83, 87]. For

example, with one recent study [78], hierarchical cluster analysis suggested the existence of

five major categories of breast cancer. Two groups of predominantly estrogen receptor pos-

itive (ER+) cancers had expression patterns similar to breast luminal cells (called luminal

A and B). For the ER− cancers, three additional categories were identified that over ex-

pressed genes associated with the ERBB2 amplicon at 17q22, had a basal cell expression

pattern or resembled normal breast tissue. The significantly different clinical outcomes of 4

of these groups (luminal A, luminal B, basal and ERBB2) highlighted the potential biological

importance of this classification. Although these groups could be broadly defined, the fine

structure of dendrograms varied between individual cluster analysis methods and the authors

concluded that the observed high level branching was not always a reflection of biologically

meaningful relationships.

In this chapter we will apply a new probabilistic approach for finding informative structure

in such datasets. This approach is called Latent Process Decomposition (LPD) [70]. It

is essentially equivalent to the Latent Dirichlet Allocation approach of Blei et al [15] but

with Multinomial distributions begin replaced by Gaussian distribution. In the model each

sample (or gene expression measurement) is represented as a combinatorial mixture over a

finite set of latent processes (a process is an assumed functionally related set of samples or

genes). Observations are not necessarily assigned to a single cluster. This reflects a prior

belief that a number of processes could contribute to a given gene expression level or that

a tumour could have a heterogeneous structure because it overlaps several defined states.

Most cluster analysis methods use such an implicit mutual exclusion of classes assumption

and several algorithms which avoid this, potentially unwarranted, assumption have been

proposed recently [34, 63, 18]. The proposed approach has other advantages. For example,
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an estimate of the optimal number of sample or gene clusters can be objectively assessed by

cross validated likelihood comparison. Also samples and gene expression levels are modelled

using a common space of explanatory variables. This is in contrast to the use of dendrograms

where samples and gene expression values are typically clustered separately, amounting to

two distinct reduced space representations which are not easily related. As a consequence

of its probabilistic approach LPD can also readily handle missing values. It has been shown

that LPD also compares favourably to various other cluster analysis methods [70].

To illustrate its potential we apply this approach to breast cancer datasets from Sorlie et al

[78], West et al [87], van ’t Veer et al [83] and de Vijver et al [25]. The method appears to give

clearer insights into these datasets suggesting at least 4 principal processes, each associated

with a different clinical outcome. The method is outlined in Appendix 1.

6.3 Latent Process Decomposition

Here we shall give a brief overview of Latent Process Decomposition (LPD). For a more

detailed description of the method the reader is referred to Rogers et al. [70]. One of the

assumptions of LPD is that each sample can be represented as a combinatorial mixture over

multiple processes. This is in contrast to the implicit mutual exclusion of classes assumption

of other cluster analysis methods. We have used the term process rather than cluster to

emphasis this difference with standard cluster analysis methods. This also emphasises the

the generative process nature of a probabilistic approach. The graphical model for LPD was

discussed in the graphical models section 2.2 of chapter 2.

To remind the reader, in the standard way that was given in chapter 2 we will construct a

generative probabilistic model, with parameters Θ for some data D. We will then maximise

the posterior probability of a model parameters given the data, p(Θ|D), which from Bayes

rule can also be written:

p(Θ|D) ∝ p(D|Θ)p(Θ) (6.1)
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where p(D|Θ) is the likelihood and p(Θ) is the prior distribution of the model parameters

Θ.

The approach we now outline is described in more detail elsewhere [70]. It is based on the

Latent Dirichlet Allocation (LDA) approach to data modelling [15], comparing favourably

in likelihood terms with alternatives such as mixture models [58] and other approaches (see

[70]). Under this model we assume that the (logged) gene expression ratios from a microar-

ray experiment follow approximate Gaussian distributions. We shall denote the set of gene

expressions for an single sample d by Ed, the expression for a single gene as Edg and take

k = 1, . . . ,K as an index for processes. The likelihood of our model is then given by equation

6.2

log p(D|µ,σ,α) =
∑

d

log
∫

θ

p(Ed|µ,σ,θ)p(θ|α)dθ

=
∑

d

log
∫

θ

[

∏

g

∑

k p(Edg|µk, σk)θk
]

p(θ|α)dθ
(6.2)

Exact inference for 6.2 is intractable. We can however lower bound this expression using

Jensen’s inequality and perform inference using a variational EM algorithm. Thus our ap-

proach parallels the Latent Dirichlet Allocation method of Blei et al [15] which derives a

similar lower bound for discrete data.

A lower bound on equation 6.2 is constructed through the introduction of two variational

distributions φ and γ with parameters φdgk and γdk. φ is a discrete distribution and γ a

sample specific Dirichlet distribution. The bound is then maximised for all model parameters

and latent variables to give the following update equations:

φdgk =
N (Edg|µgk, σgk) exp [ψ(γdk)]

∑K
k′=1 N (Edg|µdk′ , σgk′) exp [ψ(γdk′)]

(6.3)

γdk = αk +
G
∑

g=1

φdgk (6.4)
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where N (. . .) is a normal distribution and ψ(z) is the digamma function. For gene g and

process k, µgk and σgk are the means and standard deviations (for example, in Figure 6.6

these give the means and spreads for the 4 processes illustrated). γgk, is the parameter of

a variational Dirichlet distribution. From equation ... we see that normalising γgk or k will

give the expected number of times process k was selected in the generation of sample g. The

model parameter updates are:

µgk =

∑D
d=1 φdgkEdg
∑D

d=1 φdgk
(6.5)

σ2
gk =

∑D
d=1 φdgk(Edg − µgk)

2

∑D
d′=1 φdgk′

(6.6)

As there is no closed form update for the Dirichlet model parameter αk and second order

gradient descent technique is used (see [15] Appendix A.4.2 and [70]).

The maximum likelihood approach given above can be easily extended to a maximum poste-

rior (MAP) solution. We shall endow the model parameters with suitable prior distributions.

Thus, a suitable prior on the means µ would be a Gaussian distribution with zero mean (see

section 2.1.3. This would reflect a prior belief that most genes will be uninformative and

will have logged expression ratios around zero (i.e. they are unchanged compared to a ref-

erence sample). For the variance, we may wish to define a prior that penalises over-complex

models and avoids over-fitting. Microarray data is inherently noisy and so a Gaussian which

is collapsing onto a single point is highly unlikely. With a suitable choice for the prior an

extension of our model to a full MAP solution is straightforward. Our combined likelihood

and prior expression is (assuming a uniform prior on α):

p(µ,σ,α|D) ∝ p(D|µ,σ,α)p(µ)p(σ). (6.7)

Taking the logarithm of both sides we see that the maximisation task is given by:
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α,σ,µ = arg max
α,σ,µ

log p(G|µ,σ,α) + log p(µ) + log p(σ). (6.8)

Thus we can simply append these terms onto our bound on the log-likelihood. Noting that

the prior distributions are functions of µ and σ only (and any associated hyper-parameters),

we conclude that these extra terms only affect the update equations for µdk and σdk. For

algebraic simplicity let us assume the following priors:

p(µgk) ∝ N (0, σµ) (6.9)

p(σ2
gk) ∝ exp

{

− s

σ2
dk

}

(6.10)

then we obtain the following new update equations:

µgk =

σ2
µ

D
∑

d=1

φdgkEdg

σ2
gk + σ2

µ

D
∑

d=1

φdgk

(6.11)

σ2
gk =

D
∑

d=1

φdgk(Edg − µgk)
2 + 2s

D
∑

d=1

φdgk

(6.12)

The prior for σ is improper, in that it does not have a finite integral but as we are only looking

for a MAP solution this is acceptable. Once the model parameters have been estimated, we

can calculate the likelihood for a collection of D′ samples using:

L =
D
∏

d=1

∫

θ







G
∏

g=1

K
∑

k=1

N (Edg|k, µgk, σgk)θk







p(θ|α)dθ (6.13)
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Fig. 6.1: Hold-out log-likelihood as a function of s for the datasets of Sorlie et al (left) and
van ’t Veer et al (right).

where we estimate the expectation over the Dirichlet distribution by averaging over N sam-

ples, θn drawn from a Dirichlet with the estimated model parameter α, p(θ|α)

L ≈
D
∏

d=1

1

N

N
∑

n=1







G
∏

g=1

K
∑

k=1

N (Edg|k, µgk, σgk)θkn







(6.14)

We shall use the estimated likelihood from equation 6.14 in a cross validation to both de-

termine the optimal number of processes to use and to determine optimal hyper-parameters

used in the prior. Indeed cross validation plots for the hyper-parameter s for two of the

data sets we will study are given in figure 6.1. As reported elsewhere [70] the model is little

affected by choice of the prior parameter σµ in equation (6.9) and we have set this value to

0.1.
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6.4 The Application of Latent Process Decomposition to

four Microarray Datasets for Breast Cancer

On all the data sets given below we shall perform a 10 fold cross validation of the likelihood.

That is we will select 10% and then estimate the model parameters on the remaining 90%

of data by iteratating the update equations given in section 6.3. The average likelihood of

the left out data will then be estimated using equation 6.14. This is then repeated for each

remaining 10% giving us 10 values of the held out likelihood. This data will be used to plot

the subsequent likelihood curves.

6.4.1 Data set of Sorlie et al

The first dataset which we will use is from the study of Sorlie et al [77]. We took data from

115 primary breast carcinoma samples (labelled Norway/Stanford and very predominantly of

invasive ductal type) and we used the same set of 552 genes selected in their study. In Figure

6.2 we give both the logged maximum-likelihood curve and logged maximum a posterior curve

for a cross validation of LPD [70]. For the maximum likelihood model the log-likelihood has

a peak at approximately 4 processes indicating this is a suitable number of processes to use.

For the MAP solution (Figure 6.2, upper curve) each model parameter has been given a

prior. This cure rises to a plateau after which no further gain is to be made by introducing

further processes since the model will not exploit this extra freedom. In contrast, for the

maximum likelihood solution, the log-likelihood falls as further processes are introduced since

the algorithm will use these and construct an over-complex model.

Taking the choice of a 4 process model and running the update equations of section 6.3 on

the whole dataset we can plot then plot figure 6.5. This is a plot where the peaks indicate the

expected proportion of genes in a sample d that have been generated by selecting process k

(these peaks are given by normalised γdk parameters). Unlike most cluster analysis methods,

samples can belong to several processes simultaneously.

By cutting the plot 6.2 at 0.5 we assign each sample d to at most one process k (indeed some

patients may not be assigned to any process) we can determine the corresponding Kaplan-
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Fig. 6.2: The log-likelihood (y-axis) versus number of processes (x-axis) using the MAP
solution (upper curve) and maximum likelihood solution (lower curve) for the Sorlie et al
dataset Stanford/Norway dataset [77].
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Fig. 6.3: Decomposition diagram derived from LPD for the dataset of Sorlie et al. The top
process is identified with the trend curve 3 in Figure 6.4(a), the second process is identified
with 2, the third with 4 and the lowest is identified with the indolent process 1 in Figure
6.4(a).
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Fig. 6.4: Kaplan-Meier plots for the Sorlie et al dataset. The graphs show fraction not
expired from the disease (y-axis) versus number of months (x-axis). For KM1 (left) there are
9 patients in process 1, 32 in 2, 48 in 3 and 18 in 4 (the remaining 8 samples are insufficiently
identified with a process). A vertical drop indicates expiry from the disease and a star
indicates the patient is not recorded as expired from the disease (this includes the point at
which some patients exited the survey). KM2 corresponds to a different initialisation of the
algorithm.

Meier plot in Figure 6.4(a). The separation of patients into distinct survival groups is more

clear cut than that made by the original authors [78] with one indolent subtype and three

aggressive subtypes indicated.

As a consequence of the variational EM algorithm used solutions for model parameters cor-

respond to local maxima in the likelihood space. In particular, local maxima correspond to

models with good fits to the data with the intervening regions in model space corresponding

to poorer fits. Nevertheless, it is likely that models with good fits are often concentrated

in model space. However, this does mean different initialisations of the algorithm will give

different solutions. In fact, since many peaks in Figure 6.5 are near 0.5, the Kaplan-Meier

plot is the most sensitive result dependent on this effect. Figure 6.4(b) is a typical result from

a different initialisation in which some patients have moved between the outcome trends. To

investigate this issue we restarted the algorithm with 50 randomly constructed initialisations

and found that 32 of these gave a Kaplan-Meier plot in which no patient had expired from

the disease in process 1. Furthermore, these 32 solutions had a distinctly higher average log-

likelihood than those solutions with at least one patient expiring from the disease in process
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Fig. 6.5: With 50 random initialisations, 32 instances gave Kaplan Meier plots with a purely
indolent process 1 (lower histogram) and 18 cases had at least one patient expiring from the
disease (upper histogram). The x-axis gives the value of the log-likelihood and the y-axis the
frequency of occurrence. Solutions with a purely indolent process 1 gave a higher average
log-likelihood indicating they give a better fit to the data.

1, indicating they are more appropriate models (Figure 6.5).

Apart from identifying samples with processes, we can use the model parameters to identify

those genes which are most prominent in distinguishing processes. For each gene g in each

process k we have determined a mean µk and standard deviation σk. We can plot density

curves for each of these distributions as show how they match the spread of data, Eg across the

whole data set. An example of two density curves is given in Figures 6.6(a) and 6.6(b). These

density curves are derived from the dataset taken as a whole and are not one-dimensional

fits to the expression values for that gene. To rank genes that distinguish between processes,

k1 and k2, we can use the score Z1 = |µk1 − µk2 |/
√

σ2
k1

+ σ2
k2

. Apart from comparing two

processes we could also compare one process with the rest e.g. by using the lowest pairwise

Z1-score. Unfortunately this score can be adversely influenced by large variances. Thus

the gene depicted in Figure 6.8(a) does not score well because it has a large variance in the

denominator of Z1. Consequently we will also use a second, non-parametric rank-based, score

(based on the Mann-Whitney test [69]) to highlight such cases. This score will be denoted

Z2 and quantifies the probability of observing a sequence of ranked and labelled data points
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Fig. 6.6: Inferred densities for GRB7 and ERBB2 for the Sorlie et al dataset, with + the
expression values for samples identified with process 3. Though only over-expressing in
process 3 a subset of samples do not over-express GRB7 suggesting a possible subprocess
within this process. In this and subsequent figures individual expression values are marked
◦ if the samples are associated with process 1, × with 2, + with 3 and · if associated with
process 4.

(ranked by expression ratio and labelled 1 (process of interest) or 2 (other processes)).

No single gene is a particularly distinct marker for process 1. However, of the top 20 ranked

genes distinguishing process 1 from the rest, all but one exhibit relative under-expression in

process 1. For the three aggressive processes (2-4), process 4 has the most distinctive genes

and process 2 the least distinctive (the highest ranked gene is LIV-1). Using the Z1-score the

most distinctive gene in process 3 is GRB7, depicted in Figure 6.6(a). It has a score Z1 = 3.84

(p = 0.00006) with only Z1 = 1.59 (p = 0.06) for the next highest ranked gene (PAPSS2).

GRB7 is an adaptor-type signalling protein which is recruited via its SH2 domain to a variety

of receptor tyrosine kinases (RTKs), including ERBB2 and ERBB3. It is over expressed in

breast, esophageal and gastric cancers, and may contribute to invasiveness potential [67]. It

is frequently co-amplified with ERBB2 (HER2) in breast cancer and from Figure 6.6(b) we

see that ERBB2 is, indeed, only over expressed in process 3.

Process 4 has the most distinctive set of genes. In agreement with previous observations

[78], this process has basal cell characteristics e.g. cytokeratin 5 appears up-regulated. Using

the Z1 score the top ranked gene distinguishing process 4 is FLT1 (VEGFR1) (Figure 6.7).
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Fig. 6.7: Inferred densities for FLT1 (VEGFR1) in process 4 with · denoting the corresponding
expression values.

VEGFR1 (especially its soluble isoform) is a negative regulator of vascular endothelial growth

factor availability. Indeed, VEGFR1 over expression is associated with improved survival in

breast cancer [90]. Estrogen mediated decrease in VEGFR1 expression can cause increased

angiogenesis leading to enhanced breast tumour progression [31].

The second ranked gene by Z1-score is MAFG which is associated with up-regulation of

protective anti-oxidant enzymes under cellular conditions of oxidative stress [47]. Third

ranked is FOXC1, a gene which expresses a forkhead transcription factor. The fourth ranked

gene is XBP1 expressing an X box binding protein and the fifth ranked gene expresses AD021

protein. In the table below we list the top 12 probes ranked by the Z2 score for process 4.

FOXA1 and FOXC1 are members of the forkhead family of transcription factor genes (Figure

6.8).

FOXA1, GATA3 and XBP1 encode transcription factors and their roles and association with

the estrogen receptor-α gene (ESR1) and trefoil factors (TFF3 and TFF1) are reviewed by

Lacroix and Leclerq [50].

In Figure 6.9 we have given the original dendrogram decomposition reported in Sorlie et al
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Rank Gene Z2-score Expression

1. TFF3 6.35 Under
2. FOXC1 6.32 Over
3. FOXA1 6.30 Under
4. XBP1 6.25 Under
5. GATA3 6.11 Under
6. B3GNT5 6.08 Over
7. FLJ14525 6.05 Over
8. FLT1 6.04 Under
9. GALNT10 5.95 Under
10. FOXC1 5.88 Over
11. FBP1 5.76 Under
12. GATA3 5.68 Under

Tab. 6.1: The top ranked genes distinguishing process 4 by Z2-score for the dataset of Sorlie
et al. Z2 follows a normal distribution with N (0, 1) thus the associated probabilities of
occurrence are upper bounded by 10−8 reflecting the fact that the ordering of expression
values for process 4 against the set of expression values for the other processes is highly
improbable according to a null hypothesis. In the original data the FOXC1 clone is annotated
as FLJ11796 and FOXA1 as HNF3A.

−12 −10 −8 −6 −4 −2 0 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1

2
3

4

(a) FOXA1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

1

2
3

4

(b) FOXC1

Fig. 6.8: FOXA1 (HNF3A) under expresses while FOXC1 over expresses in process 4 (·
denotes the expression values in process 4).
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[78] along with the assignment to processes given in Figure 6.5. Sorlie et al [78] labelled a

subset of the tumour samples as Luminal A and B, ERBB2+ and Basal. Their 18 Basal

tumours match the 18 Process 4 samples. Indeed, we shall later see that this process is very

distinctive. Elsewhere LPD labels a wider range of samples than labelled by Sorlie et al

(though this would depend on the threshold chosen for the significance of the peaks in Figure

6.5). Their 11 Luminal B and 11 ERBB2+ are exclusively subsets of process 3, while their 28

Luminal A are exclusively associated with processes 1 and 2. Indolent process 1 is exclusively

sampled from some Luminal A samples and other samples which were left unlabelled in their

study.

6.4.2 Dataset of West et al

For the Affymetrix breast cancer dataset of West et al [87] we used data from 49 samples

(exclusively derived from tumours of invasive ductal type) with 500 genes ordered by their

variance across the whole data set. As well as having a high ranking variance genes were only

selected if at least 30% of them (15 samples) were clean experimental measurements. This was

taken as having a p-value no greater than 0.001. LPD could computationally handle the full

dataset but some feature selection is advisable since redundant information clouds analysis

with noise. No survival data was available for this dataset, though time-to-metastasis was

available. Nevertheless we can derive the corresponding MAP solution which also plateaus

after 4 processes (Figure 6.10).

Using 4 processes, we then get the following decomposition diagram given in figure 6.11.

As observed previously, process 4 has the most distinctive genetic signature which, from time-

to-metastasis data, appears identified with the second row in Figure 6.11. The top-ranked

genes distinguishing this process are given in the Table 6.2.

Interestingly, GATA3, FOXA1, XPB1, TFF3 and FPB1 are in common between this Table

and Table 6.1. Though GRB7 and ERBB2 were highlighted previously [78] they were not

selected in the 500 genes of choice as they did not pass the feature selection. Though this

fact most likely stems from the smaller dataset size.
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Fig. 6.9: A comparison between the dendrogram reported in Sorlie et al [78], Figure 1B, and
the decomposition by LPD given here in Figure 6.5. Underneath the tree the LPD assignment
to process is designated by the numbers 4 to 1. Below these numbers are sample titles for
identification with Sorlie et al [78], Figure 1B. Process assignment numbers are missing in a
few cases because the peak in Figure 6.5 (normalised γdk, see equation 6.4, Appendix 1) was
ambiguous in its assignment of sample to process)
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Fig. 6.10: The log-likelihood (y-axis) versus number of processes (x-axis) using a MAP ap-
proach (right) for the West et al dataset.
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Fig. 6.11: Decomposition diagram derived from LPD for the dataset of West et al.
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Rank Gene Z2-score Expression

1. hCRHP 5.51 Under
2. XBP1 5.50 Under
3. FOXA1 5.26 Under
4. FPB1 4.98 Under
5. FLJ13710 4.94 Under
6. GATA3 4.94 Under
7. GATA3 4.92 Under
8. CNAP1 4.90 Over
9. NFIB2 4.83 Over
10. Human complement factor B 4.83 Under
11. TFF3 4.79 Under
12. FLJ13710 4.78 Under

Tab. 6.2: Top ranked genes using the Z2-score distinguishing a tentative process 4. Using
the Z1 score GATA3 is ranked 2nd, FOXA1 is 3rd, XPB1 is 4th and TFF3 is 6th. The
probabilities of occurrence are upper bounded by 2 × 10−6 (for Z2 = 4.78).

6.4.3 Dataset of of van ’t Veer et al

For the dataset of van ’t Veer et al [83] we used samples from 78 patients with primary

breast carcinomas, a further 18 samples from patients with BRCA1 germline mutations and

2 samples with BRCA2 mutations. We used 500 genes selected in the same way to as in the

West data in section 6.4.2, using those genes with a p-value of less than 0.001 in more than

30 tumours. Survival data is not available though we can still compute the log-likelihood

curves (Figure 6.12) and this suggests a peak at 4 processes.

The spectrum of peaks corresponding to Figure 6.5 indicated that 16 of the 18 BRCA1

mutation carriers belonged in one process (which, from the time to metastasis data, appeared

to be process 4 in Figure 6.4(b)). The other 2 BRCA1 samples were spread between processes

and, interestingly, were the only 2 patients not to proceed to metastasis. The two BRCA2

samples belonged together in the same process, distinct from the process associated with the

BRCA1 samples. This picture agreed with the interpretation by dendrogram of Sorlie et al

[78].

Using the Z1-score, one process has ERRB2 (Figure 6.13(a)) and GRB7 (Figure 6.13(b)) in
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Fig. 6.12: The log-likelihood (y-axis) versus number of processes (x-axis) using the MAP
solution (upper, plateauing curve) and maximum likelihood (lower curve) solution for the
Van ’t Veer et al dataset [83].

second and third ranked position with the distribution of expression values having a similar

bimodal distribution to that in Figures 6.6(a) and 6.6(b).

The highest ranked Z2-scores for genes in the four processes are 7.02, 5.85, 5.61 and 2.87.

Interestingly, the most distinctive process (with Z2 = 7.02) is associated with genes described

previously for process 4, such as TFF3 and FOXC1 (Table 6.3). TFF3, and the GATA3,

FOXA1 and XPB1 genes mentioned previously, all feature in a small gene expression graph

derived from a sparse graphical model [27, 28] indicating genes closely linked with the estrogen

receptor gene.

6.4.4 Dataset of de Vijver et al

The study of van ’t veer et al preceded a larger study by de Vijver et al [25] which used 295

samples from patients with primary breast carcinomas. The authors of this study discovered

tentative signatures for poor and good prognosis using a reduced 70 gene set selected from

24,479. In Figure 6.16 we present a Kaplan-Meier plot with the lower dashed curve corre-

sponding to patients in the poor signature cohort and the upper dashed curve corresponding
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Fig. 6.13: Inferred densities for GRB7 and ERBB2 for the dataset of van ’t Veer et al.

Rank Gene Z2-score Expression

1. TFF3 7.02 Under
2. AGR2 6.89 Under
3. FOXC1 6.79 Over
4. GABA 6.75 Over
5. VGLL1 6.68 Over

Tab. 6.3: TFF3 and FOXC1 are first and third ranked for the most distinctive process in the
dataset of van ’t veer et al. Similarly they are first and second ranked for the most distinctive
and aggressive process (4) in the data of Sorlie et al (Table 6.1).
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Fig. 6.14: The log-likelihood (y-axis) versus number of processes (x-axis) using a maximum
likelihood and MAP approach for the de Vijver et al dataset.

to the good signature cohort. In Figure 6.14(a) we have re-analysed the same dataset (295

samples, 70 features) using LPD and a maximum likelihood approach. The curve shows a

peak in the range 4 to 6 processes, implying that the 2-process model proposed by the original

authors [25] is a sub-optimal interpretation of the data. In Figure 6.14(b) we see that the

likelihood curve for the MAP solution plateaus after using 4 processes.

If we plot the corresponding Kaplan-Meier curves for Figure 6.5 we get the curves in Figure

6.16 in which the top process in Figure 6.5 is identified with curve 3 in Figure 6.16, the

second process is identified with curve 4, the third process with 2 and the fourth (lowest)

with 1. Compared to the original analysis of de Vijver et al (dashed curves in Figure 6.16),

all patients in processes 3 and 4 derive from their lower (poor prognosis) group while 10

patients in process 1 are derived from their upper (good prognosis) group and 2 are derived

from their poor prognosis group. All patients in process 2 derive from their good prognosis

group. Thus our analysis is compatible with their description while enhancing the distinction

between clinical outcomes (the solution presented here corresponds to the highest likelihood

solution found in numerical experiments).

The inferred densities for two top-ranked genes separating processes 1 and 4 are given in

Figures 6.5 and 6.17(b). In fact, of the 26 top-ranked genes separating processes 1 and 4,

21 genes move from under-expression to over-expression as we progress from indolent to the
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Fig. 6.15: A 4 process decomposition of the data by LPD. The data is not in the same order
as the dendrogram.
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Fig. 6.16: Kaplan-Meier plot for the processes identified in Figure 6.5: fraction not expired
from the disease (y-axis), versus number of months (x-axis). The curves labelled 3 and 4
meet at the midpoint but do not cross over. The number of patients identified with each
curve is 12 (process 1), 97 (2), 110 (3) and 56 (4) (these numbers do not sum to 295 because
some samples are ambiguously identified). The original split of de Vijver et al [25] are given
as dashed curves for comparison.
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Fig. 6.17: Inferred densities for ORC6L and STK32B. The individual expression values are
given below the inferred density curves, with ◦ associated with process 1, × with 2, + with
3 and · with process 4.

most aggressive subtype, following the trend in Figure 6.5, while 4 genes follow the reverse

trend illustrated in Figure 6.17(b).

The observation that most of the listed genes under-express in process 1 agrees with an

observation for the dataset of Sorlie et al in which we found that 19 from the top ranked 20

genes distinguishing process 1 from the others under-expressed on the average in process 1.

The gene names, their mean expression values per process and this trend are discussed in

further detail in Appendix 2 to this paper.

6.5 Monte Carlo Analysis

In this section we apply the Gibbs sampler derived in section 2.4.3 to the data set of Sorlie

et al and De Vijver et al. This will provide a full posterior distribution for the model param-

eters. We can use this posterior distribution to investigate how accurate the point estimate

approximations from the variational EM algorithm are. To implement a Gibbs sampler we

shall use the full conditional distributions from equations 2.97 . . . 2.101. We have to select

hyper parameters for the prior distributions of α, µ and σ2. The choices here are by no means
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Fig. 6.18: The prior distribution of α is a gamma distribution with parameters a = 20 and
b = 0.05. Note this is unnormalised.
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Fig. 6.19: Unnormalised prior distributions for the Gaussian parameters.

optimal but express some confidence, based on experience, in the range of values that the

parameters are likely to take. The prior on α was chosen to have parameters a = 20 and

b = 0.05 giving a mean of 1 and variance 0.05, a plot of this is given in figure 6.18. The prior

on µ is a simple N (0, 1) and the prior on σ2 is InverseGamma with parameters 10 and 1

for Sorlie et al and 50 and 1 for De Vijver et al. The difference in priors on the variance is

down to a smaller spread of expression values in the De Vijver et al data. Plots of these two

distributions for Sorlie et al are given in figure 6.19.

Each variable in the algorithm was initialised randomly. There was then a burn in period of

40000 iterations to allow the Monte Carlo algorithm to stabilise, then the next 5000 samples

were taken to form the posterior distributions. To make a comparison with the results of the

variational EM algorithm we chose there to be 4 process, this was in keeping with previous
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Fig. 6.20: The posterior distribution of the components of α.

analysis. Figure 6.20 shows the posterior distribution for each component of α. The plot

indicates sampling from this will generally give quite low values of α, this is equivalent to a

peaked simplex for the corresponding Dirichlet distribution.

As a comparison to figure 6.8(a) figures 6.21 and 6.22 show the posterior distributions for the

mean and variance of the mixture density for the FOXA1 gene. It should be stressed that

despite obvious similarities figures 6.8(a) and 6.21 are not comparable. Figure 6.21 is plot of

the distributions that govern where the peak of each Gaussian in 6.8(a) lies. From this and

correspondingly from 6.22 we can see that the point estimate obtained from the variational

EM algorithm is a good approximate of the mode of the full posterior.

Similarly, figure 6.23 shows the posterior distribution of the µ for the gene FLT1. The

distributions of expression for FLT1 based on the point estimates derived from the variational

EM algorithm is given in figure 6.7.

To construct a Kaplan-Meier plot of patient survival we need to assign patients to a single

class. Previously this was done by assigning patients based on the γ latent variable associated

with their sample. In the Monte Carlo analysis we have a multinomial variable θ which
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Fig. 6.21: The posterior distribution of µ for FOXA1 (HNF3A).

0 5 10 15
0

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

0 0.5 1 1.5
0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

Fig. 6.22: The posterior distribution of σ2 for HNF3A.
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Fig. 6.23: The posterior distribution of µ for FLT1 (VEGFR1).

effectively governs membership to each process. Figure 6.24 shows the distributions of θ

across 4 processes for patient 12. By taking a the mode of each of these distributions,

normalising these values and then having a threshold of 0.5 we can assign each patient to a

process (or indeed no process if there is no clear association).

Using the normalised mode of θ we can derive a survival curve for the patient cohort. The

normalised θ plot is give in figure 6.25, as this is for comparison to figure we have ordered the

patients (x axis) is the same way. The corresponding survival curve is given in figure 6.26.

As the processes are assigned within the algorithm the original ordering of 6.5 has changed in

6.25, with the transitions being 1 → 2, 2 → 4, 3 → 1 and 4 → 3. Apart from the reordering

the results are very similar, with the key feature being that in the variational EM plot (figure

6.5) patients are more likely to have a stronger association with one particular process. The

apparently more noisy results of the Monte Carlo approach can be put down to the time

for which the algorithm was run. One would expect more stable crisper distributions if you

allowed a longer Burn In period and more samples to be taken.

Again Using the normalised mode of θ we can derive a survival curve for the patient cohort

for the dataset of De Vijver et al. The normalised θ plot is give in figure 6.27, as this is
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Fig. 6.24: The posterior distribution of θ for Sample 12.
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Fig. 6.25: Decomposition diagram derived from LPD for the dataset of Sorlie et al using a
Monte Carlo approach to inference.
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Fig. 6.26: Kaplan-Meier plots for the Sorlie et al dataset. The graphs show fraction not
expired from the disease (y-axis) versus number of months (x-axis). There are 5 patients in
process 1, 23 in 2, 54 in 3 and 14 in 4 (the remaining 19 samples are insufficiently identified
with a process). A vertical drop indicates expiry from the disease and a star indicates the
patient is not recorded as expired from the disease (this includes the point at which some
patients exited the survey).
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Fig. 6.27: Decomposition diagram derived from LPD for the dataset of De Vijver et al using
a Monte Carlo approach to inference.
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Fig. 6.28: Kaplan-Meier plots for the De Vijver et al dataset. The graphs show fraction not
expired from the disease (y-axis) versus number of months (x-axis). There are 6 patients
in process 1 (2), 136 in 2 (3), 103 in 3 (1) and 47 in 4 (4) (the remaining 3 samples are
insufficiently identified with a process and the number in parenthesis is the column in figure
6.27 with (1) top and (4) bottom). A vertical drop indicates expiry from the disease and a
star indicates the patient is not recorded as expired from the disease (this includes the point
at which some patients exited the survey).

for comparison to figure 6.5 we have ordered the patients (x axis) is the same way. The

corresponding survival curve is given in figure 6.28. As the processes are assigned within

the algorithm the original ordering of has changed in 6.27, with the transitions being 1 → 3,

2 → 4, 3 → 1 and 4 → 2. Apart from the reordering the results are once again very similar,

with the key feature being that in the variational EM plot (figure 6.5) patients are more likely

to have a stronger association with one particular process. Interestingly the small indolent

subgroup in maintained.

Figure 6.29 shows the posterior distributions for the µ of gene ORC6L. A plot of the density

of the expression of ORC6L using the point estimate derived by the EM algorithm was given

in figure . The same progression is seen from under expression for the indolent subgroup

through to over expression for the aggressive subgroup.
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Fig. 6.29: The posterior distribution of µ for ORC6L.

6.6 Variational Bayesian Inference

In this section we apply the Variational Bayesian (VB) approach to parameter estimation

given in section 6.6. We shall use data sets of Sorlie et al and De Vijver et al as examples

and demonstrate that the results are consistent with those from the EM algorithm. The

variational Bayesian approach differs from the EM algorithm as its aim is to estimate the

hyper parameters governing the distributions for each model parameter. To proceed with

the algorithm we iterate equations 2.55 and 2.56 until convergence. At each iteration we

are maximising a lower bound on the evidence of the data (given in equation 2.57). After

every iteration we evaluate the bound and continue until there is no significant increase (we

took this as a difference of 0.00001, but this is rather arbitrary). As all model variables

are explained away within VB it is more straightforward to estimate the optimal number of

processes present in the data. No cross validation is required and so all the available data

can be used. To compare two models, with a different choice of the number of processes K,

we can simply compare the final values of bound F (Θ), after convergence. The section is

designed to justify the finding of sections where we have used a variational EM algorithm.

The first data set we analysed was that of De Vijver et al. Variables were randomly initiated
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Fig. 6.30: Free energy F (Θ) (a bound lower on the evidence p(Data|K)) against K for the
data set of De Vijver et al

and the prior parameters given in the graphical model defined in figure 2.14 were set to

v0 = 1, m0 = 0, a0 = t0 = 20 and b0 = s0 = 0.05. A plot of the final bound for different

choices of k is given in figure 6.30, this demonstrates that an optimal choice fr k would be

between 3 and 5. Referring to the MAP and ML solutions (provided by the EM algorithm)

given in figure 6.14 we see the VB solution show a consistent picture for the choice of k. As

an analogous exercise to the Kaplan Meier plots given in figure 6.16, we chose 4 processes as

optimal and took membership of individual patients to a process as defined by the Dirichlet

parameter θ̃ given in equation 2.55. This is an equivalent variable to γ used in the EM

approach. A survival curve based on this criteria is given in equation 6.31. As was seen in

figure 6.16, LPD clusters the patients into groupings that have distinct survival properties.

This includes an indolent group in which no patients expire and an aggressive group in which

the vast majority expire.

Similarly we can perform identical analysis on the data set of Sorlie et al. Comparing figure

6.32 to 6.2, again we see an estimate for the number of subtypes as approximately 4. Taking

this as the number of processes and generating a KM plot based on the criteria used for the

De Vijver et al, we generate the figure 6.33. This is consistent with previous plots given in

the EM algorithm 6.4(a) and the Monte Carlo based inference, 6.26.
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Fig. 6.31: Kaplan-Meier plots for the De Vijver et al dataset. The graphs show fraction not
expired from the disease (y-axis) versus number of months (x-axis). There are 9 patients in
process 1, 85 in 2 , 60 in 3 and 53 in 4 (the remaining samples are insufficiently identified
with a process). A vertical drop indicates expiry from the disease and a star indicates the
patient is not recorded as expired from the disease (this includes the point at which some
patients exited the survey). Note, the survival curves do not cross or touch but merely go
too close for the resolution of the image to distinguish them clearly.
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Fig. 6.32: Free energy F (Θ) (a bound lower on the evidence p(Data|K)) against K for the
data set of Sorlie et al
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Fig. 6.33: Kaplan-Meier plots for the Sorlie et al dataset. The graphs show fraction not
expired from the disease (y-axis) versus number of months (x-axis). There are 15 patients in
process 1, 14 in 2, 41 in 3 and 17 in 4 (the remaining samples are insufficiently identified with
a process). A vertical drop indicates expiry from the disease and a star indicates the patient
is not recorded as expired from the disease (this includes the point at which some patients
exited the survey).
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6.7 Conclusion

The results from the four datasets used in this study are broadly consistent and indicate at

least four principal processes for breast cancer. However, as illustrated with comparison to

the prostate cancer data set studied in [70], the distinction between processes is less clear

than with other cancers, reflecting the heterogeneous nature of this disease.

Our analysis suggests the existence of an indolent subtype distinguished by under-expression

across a number of genes associated with tumour growth. There is a subtype closely related to

the Luminal A subtype proposed by Sorlie et al [78]. In line with previous observations there

is also a subtype marked by up-regulation of ERBB2 (HER2) and GRB7. The most aggressive

subtype is also the most well defined. This subtype is marked by abnormal expression of the

transcription factor genes FOXA1, FOXC1, GATA3, TFF3 and XBP1, for example, and it is

associated with loss of regulation of the vascular growth factor VEGF. As already remarked,

using a sparse graphical model [27, 28], we find that the transcription factor genes FOXA1,

GATA3, TFF3 and XBP1 appear closely linked with the estrogen receptor-alpha gene, which

with the estrogen pathway, plays a crucial role in the development of many breast tumours.

One target of ERα is the TFF1 gene and FOXA1 has a direct influence on transcription by

this gene since there are binding sites for FOXA1 in its promoter region [10]. A number of

other ERα-bound promoters have FOXA1 binding sites [51]. The role of FOXA1 has been

highlighted in a contemporary study by Laganiere et al [51]: expression by FOXA1 correlates

with the presence of ERα and it has been suggested that that this gene plays a crucial role in a

transcriptional domain governing estrogen response. Reinforcing this result, a contemporary

study by Carroll et al [22] has shown that forkhead factor binding sites are present in 54%

of 57 ER binding regions. This strongly supports the significance of abnormal expression of

FOXA1 and FOXC1 indicated by our analysis. Finally, in agreement with the analysis using

a sparse graphical model [27, 28], there appears to be an important role played by TFF3, a

close relative of TFF1.

The decomposition proposed here is at most a basic model since one would expect further

subdivision as more data becomes available, thus enabling a higher resolution picture. As

remarked previously, the effects of noise are averaged out as the dataset size increases. Thus

for the dataset of Sorlie et al the peak in the likelihood curve is at 3-4 processes but, for the
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largest dataset of de Vijver et al, it is approximately 4-5. Certainly, our analysis suggests

that the 2 process split of de Vijver et al [25] is too simple a model and at least 4 main

processes are justified by the datasets used. The dataset for West et al was exclusively based

on invasive ductal tumours and the Sorlie et al dataset had samples very predominantly of

this type. However, use of samples consistently of the same histological type would also

help reduce noise and improve definition. The indolent subtype 1 was not presented in the

original analysis of Sorlie et al and the ability of the method to find this feature highlights

the importance of using Probabilistic methods in this context.

6.8 Supplementary comment on the dataset of De Vijver

et al.

In the original publication of de Vijver et al [25] 21 cDNA sequences had no gene name

or information associated with them. Given this fact and the monotonic trends in mean

expression values mentioned in the main text we have updated and examined ontology in-

formation for the 70 genes and their encoded proteins to examine their significance. A full

description of all 70 entries and further information is available as supplementary data at

www.enm.bris.ac.uk/lpd/bc.htm. In the table below we list the top ranked genes distin-

guishing process 1 vs process 4 (with Z1 > 2) for the dataset of de Vijver et al. The 4

columns headed Process are the mean logged expression values (using log base 10). The

processes are ranked in order of most indolent (1) to most aggressive (4) outcome. The end

column highlights the progression trend across the 4 processes. Genes marked BCSS1 and

BCSS2 correspond to hypothetical genes: BCSS1 is ‘moderately similar to T50635 hypothet-

ical protein’ and BCSS2 is ‘weakly similar to ISHUSS disulfide-isomerase’. The Z1 values

follow a normal probability distribution N (0, 1).

Of these genes, ORC6L is involved in DNA replication and serves as a platform for the as-

sembly of additional initiation factors such as CDC6 and MCM. siRNA gene silencing studies

indicate that ORC6L plays an essential role in coordinating chromosome replication and

segregation with cytokinesis. STK32B is a serine/threonine kinase. KIAA1442 encodes a

transcription factor with an IPT/TIG motif. These motifs are found in cell surface receptors

such as Met and Ron as well as in intracellular transcription factors where it is involved in
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DNA binding. Intriguingly the Ron tyrosine kinase receptor shares with the members of its

subfamily (Met and Sea) the control of cell dissociation, motility, and invasion of extracel-

lular matrices (scattering) [24]. Two genes have no known function though Contig38288RC

is weakly similar to ISHUSS protein disulfide-isomerase, an enzyme that participates in the

folding of proteins containing disulfide bonds. In the Table we have labelled Contig55725RC

as BCSS1 and Contig38288RC as BCSS2 (breast cancer survival signature 1 and 2). Many

genes are involved in processes associated with tumour growth such as DNA replication

(MCM6), cell cycle control (CCNE2), spindle associated factors (NUSAP1, PRC1), chromo-

some organisation (CENPA), actin filament assembly (DIAPH3) and vascular remodelling

(ITS). All these genes are up-regulated for the most aggressive process versus the least ag-

gressive. DIAPH3, which was unidentified in the original paper, appears three times in the

70 gene set.
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Gene ID Gene name Process 1 Process 2 Process 3 Process 4 Z1 Trend

NM 014321 ORC6L −0.47 −0.32 −0.02 0.26 4.29 Up

Contig55725 RC BCSS1 −0.80 −0.54 −0.22 0.39 4.15 Up

NM 018401 STK32B 0.32 0.07 0.01 −0.11 3.14 Down

AB037863 KIAA1442 0.28 0.05 −0.01 −0.29 3.07 Down

Contig38288 RC BCSS2 −0.34 −0.16 −0.02 0.26 3.06 Up

NM 003981 PRC1 −0.45 −0.30 0.02 0.24 2.98 Up

NM 016359 NUSAP1 −0.50 −0.28 0.039 0.22 2.93 Up

NM 004702 CCNE2 −0.55 −0.32 −0.02 0.22 2.93 Up

NM 001809 CENPA −0.52 −0.41 −0.06 0.29 2.80 Up

AL137718 DIAPH3 −0.30 −0.10 0.03 0.22 2.78 Up

NM 014791 MELK −0.46 −0.21 0.01 0.26 2.71 Up

NM 016448 RAMP −0.36 −0.17 0.05 0.15 2.65 Up

Contig40831 RC AI224578 −0.39 −0.11 −0.05 0.19 2.57 Up

AL080059 TSPYL5 −0.53 −0.24 −0.15 0.25 2.50 Up

Contig46218 RC DIAPH3 −0.35 −0.22 0.04 0.27 2.50 Up

NM 003875 GMPS −0.34 −0.17 −0.05 0.21 2.45 Up

NM 020974 SCUBE2 0.24 0.19 −0.24 −0.99 2.39 Down

NM 000436 OXCT1 −0.29 −0.06 −0.10 0.15 2.37 Mixed

NM 005915 MCM6 −0.37 −0.14 0.00 0.23 2.31 Up

AA555029 RC AA555029 −0.31 −0.09 −0.06 0.15 2.27 Up

NM 002916 RFC4 −0.29 −0.133 −0.01 0.20 2.27 Up

AL080079 GPR126 −0.59 −0.25 −0.12 0.17 2.22 Up

NM 015984 UCHL5 −0.21 −0.08 −0.01 0.15 2.13 Up

Contig20217 RC TGS −0.33 −0.17 −0.02 0.17 2.08 Up

NM 006117 PECI 0.21 0.05 0.01 −0.25 2.07 Down

Contig32185 RC ITS −0.33 −0.14 −0.08 0.15 2.02 Up
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Conclusions

In this thesis we set out to apply some novel probabilistic models to biomedical data. The

probabilistic approach to modelling data, and in particular the Bayesian framework, has been

shown to be very successful in tackling a wide range of problems and will no doubt become

more popular in the future. Probabilistic methods build on a huge bank of mathematical

literature. With a wealth of well understood distributions and theory they are extremely

flexible. Models are formulated in an explicit and analytical way, with a clear generative

process. The graphical formulation introduced in chapter 2 provides a easy way to visualise

the dependencies and relationships between variables in the models. One advantage that

probabilistic approaches have over some alternatives is that since they are based on full

distributions they can give an analytical measure of the confidence in the conclusions drawn.

For example, in the case of an SVM the classification label is assigned as ±1 depending on

which side of the separating hyperplane the test point lies, but within this framework there is

no analytical mechanism to determine the confidence we have in a classification. Probabilistic

methods can also formally indicate the significance of a particular data point, eg expressions

for a particular gene.

We will now give a short summary and comment on each chapter in turn and suggest possible

extensions.

189



CHAPTER 7. CONCLUSIONS

7.1 Chapter 3: A Hierarchical Representation of Lung

Disease

Through a novel model, chapter 3 provided some interesting analysis of radiological data,

and in addition demonstrated the use of variational inference. The motivation was to au-

tomatically learn a two-level hierarchical representation of lung disease. To construct the

model we took the re-sampling based approach of the Latent Dirichlet Allocation setting of

Blei et al [15] and extended it in two ways. Firstly we replaced the original bag of words

multinomial assumption with a set of Gaussian distributions for image features. Secondly we

added a second generative level that was linked to the first via a multinomial. This gave rise

to a two-tier hierarchy in which an individual CT image would be decomposed in regions of

similar texture. The results were hard to quantify absolutely as no validation data set was

available.

There are many obvious extensions to the model. Any number of tiers can be added to the

hierarchical structure, indicating a greater granularity in disease. However each new tier

added would increase the number of parameters to be estimated and increase the complexity

of the update equations. One drawback in the the model is that cross validated maximum

likelihood analysis would only give rise to the same number of processes in the upper and

lower levels of the hierarchy. A simple approach to remedy this, and one that does not

involve changing the model, is to impose different prior distributions on the variances σ2
fk

of the Gaussian distributions. Prior distributions that favoured larger variances for upper

level and smaller variances ones for the lower level would be a suitable choice. Finally an

increase in the amount of data used would guarantee a more representative selection of the

wide ranging appearances of chest CT images, and lead to a better overall representation of

lung disease.

7.2 Chapter 4: Unsupervised Learning in Radiology

Two separate data sets consisting of textual radiology reports and corresponding CT images

were jointly modelled in chapter 4. The purpose of this work was to see to what extent it
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is possible to learn from radiological data in an entirely unsupervised manner. A variety of

probabilistic models which jointly modelled the textual and image information were analysed.

In likelihood comparisons, those with a re-sampling element based on LDA ([15]) we shown to

be superior. Indeed it was shown that the methods used automatically highlighted subtypes

of disease.

As always, a larger and more varied data set would have improved results. We were somewhat

limited by the range of disease types available for the study. This was reflected in the limited

vocabulary of Emphysema, Fibrosis and Normal that was used. A wider ranging vocabulary

with a roughly even number of samples for each type would have extended the study. One

simple extension to this work would be to include hand labelled data. At the moment the

the algorithm is entirely unsupervised, but it is straightforward to introduce a supervised

element. This is done by creating faked report-image pairings. These are such that the image

is not a full CT scan, but made up of a labelled region. The corresponding report is the

single label for that region. This faked data can be simply augmented with the original data.

7.3 Chapter 5: Joint Estimation of Motif and Gene Ex-

pression Data

In chapter 5 we attempted to model the relationship between upstream DNA motif abundance

and gene expression in a yeast stress-test data set.

The models chosen were taken as variations on the correspondence LDA of Blei et al [16].

These models proved to be better in likelihood comparison than simpler LDA models, mixture

based approaches and a null model. However, the predictive power of these models was shown

to be relatively poor. Although this was a negative result there are a number of positive

conclusions that we can draw from the detailed analysis. The expression data appeared to

have much more structure, in terms of coherent groupings of data points, than the motif

data. Indeed some sets of motifs used were extremely degenerate. This suggested that

the increased likelihood shown by the more complex models could be solely down to more

sophisticated modelling of the expression data rather than the data set as a whole. It does

indicate that, at least on this dataset, one should be wary of prediction of expression directly
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from motif data. The interactions between motifs are biologically extremely complex and

so one would expect only a non-linear model would be able to provide adequate prediction.

One possible extension would be to include more, and varied, data. In Middendorf et al [61]

they incorporate expressions of know parents (transcription factors) into the mode. In this

case these parents also appear as genes in the data set, which suggests a possible circular

prediction.

Technical extensions to the method include using a more sophisticated method of inference. It

would be possible to construct a Monte Carlo simulation to provide full posterior distributions

for all model parameters. Due to the high dimensionality of the model and the data set this

would perhaps be prohibitive for practical analysis. The variational approach provides only

point estimates of parameters, but confident assertions about the overall performance of a

model can be given based on these estimates. It is for this reason that a full Monte Carlo

simulation would probably be of little benefit.

7.4 Chapter 6 Prognostic Signatures in Breast Cancer

Chapter 6 has probably provided the most interesting results of this thesis. In this chapter

we took four independent gene expression data sets for breast carcinomas. As an initial

investigation we wanted to analyse the data to establish if there existed natural grouping

between the patients. We took the LPD algorithm of [70] and applied it to these data sets.

As well as the variational approach to inference originally used by the authors we performed

Monte Carlo simulations to confirm the findings. The results showed some striking trends

in Breast cancer that were previously unknown. It was shown consistently that there were a

greater number of distinct subtypes than the commonly assumed number of 2. A priori we

assumed the number of subtypes to be unknown. A figure of 4 subtypes was suggested from

the data sets analysed, but this may increase when larger studies become available. Moreover

the subtypes seemed to be consistently defined, by abnormal gene expression, across the data

sets. The most distinct subtype also corresponded to the the most aggressive. It is marked

by abnormal expression of a number of genes, in particular FOXA1, FOXC1, GATA3, TFF3

and XBP1. Some of these genes have appeared together in previous unrelated analyses of

breast cancer.
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The next stage in the analysis would be to apply LPD to more publicly available data sets,

such as that used in [86]. This aim of this work would be give a further estimate for the

number of subtypes of disease present in the data set. In addition, we would hope it confirms

the very distinct set of genes that are closely connected to the aggressive subtype. More

ambitious further work would be to fuse all available breast cancer data sets into one large

data set. This was attempted in the study of Segal et al [72], for a range data sets covering

different cancers. It is inherently a hard problem as each independent data set was generated

in different circumstances and so it is not valid to trivially compare absolute gene expression

values. Based on the promising results of the breast cancer study, an obvious future direction

would be to apply similar analysis to gene expression data sets from other cancers.
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Appendix A

Details of the LPD Gibbs

Sampler

A.1 LDA Gibbs

Here we give a full derivation for two conditional distributions first stated in section 2.4.3

and subsequently used in chapter 6.

We wish to find an expression for the conditional distribution of the model parameter µ

P (µgk|α, µ−(gk), σ, θ, Z,E) = P (µgk|σgk, θd, Z.g, E.g)

From joint distribution given in equation 2.96

P (µgk|σgk, θ.k, Z.g, E.g) ∝
∏

d

(

θdk
1

σgk
exp(−(Edg − µgk)

2

2σ2
gk

)

)I{Zdg=k}
1

τ
exp(−

µ2
gk

2τ2
)

Thus by combining the prior and likelihood:
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P (µgk|σgk, θ.k, Z.g, E.g) ∝∏t

(

θtk
1
σgk

exp(− (Etg−µgk)2

2σ2
gk

)

)

1
τ exp(−µ2

gk

2τ2 )

∝∏t

(

exp(− (Etg−µgk)2

2σ2
gk

)

)

exp(−µ2
gk

2τ2 )

=

(

exp(− 1
2σ2

gk
τ2 (
∑

t(τ
2E2

tg − 2τ2µgkEtg + τ2µ2
gk) + σ2

gkµ
2
gk))

)

∝
(

exp(− 1
2σ2

gk
τ2 (
∑

t(−2τ2µgkEtg + τ2µ2
gk) + σ2

gkµ
2
gk))

)

= exp(− 1
2σ2

gk
τ2 (µ2

gk(Tτ
2 + σ2

gk) − 2τ2µgk
∑

tEtg))

= exp(−Tτ2+σ2
gk

2σ2
gk
τ2 (µ2

gk −
2τ2µgk

∑

t Etg

Tτ2+σ2
gk

))

∝ exp(−Tτ2+σ2
gk

2σ2
gk
τ2 (µgk − τ2

∑

t Etg

Tτ2+σ2
gk

)2)

∼ N (
τ2
∑

t Etg

Tτ2+σ2
gk

,
σ2

gkτ
2

Tτ2+σ2
gk

)

= N (
τ2
∑

t Etg

Tτ2+σ2
gk

, ( T
σ2

gk

+ 1
τ2 )−1)

(A.1)

the posterior for µ is a Gaussian distribution N
(

τ2
∑

t Etg

Tτ2+σ2
gk

,

(

T
σ2

gk

+ 1
τ2

)−1
)

. Similarly for the

parameter σ2

P (σgk|µgk, θ.k, Z.g, E.g) ∝∏t

(

1
σgk

exp(− (Etg−µgk)2

2σ2
gk

)

)

σ−sgk

= σ−(s+T ) exp(−
∑

t(Etg−µgk)2

2σ2
gk

)

∼ InverseGamma((s+ T )/2, 1
2

∑

t(Etg − µgk)
2)

(A.2)
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Appendix B

Derivation of a Hierarchical

Mixture Model

B.1 Hierarchical Extension

We will give a full derivation of the variational EM algorithm use for inference in the model

of chapter 3

B.1.1 Derivation of update equations

Starting with the likelihood, and writing
∏

f P (Rndf ) = P (Rnd)

P (Rd|µ, σ, β, α) =
∫

4

∏Nd
n

∑

k P (Rnd|Zn = k, µ, σ)P (Zn = k|θ)P (θ|α)

∏

n

∑

k,k′ P (Rnd|Yn = k′, µ
′
, σ

′
)P (Yn = k′|Zn = k)P (Zn = k|Rnd, θ)dθ

=
∫

4 ζ1ζ2dθ

(B.1)
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Where

ζ1 =
∏

n

∑

k

P (Rnd|Zn = k, µ, σ)P (Zn = k|θ)P (θ|α)

and

ζ2 =
∏

n

∑

k,k′

P (Rnd|Yn = k′, µ
′
, σ

′
)P (Yn = k′|Zn = k)P (Zn = k|Rnd, θ)

Consider the full data log-likelihood
∑

g logP (Rd|µ, σ, β, α). Via the introduction of two

variational distributions: a sample specific Dirichlet distribution with parameters γdk and a

sample and region specific multinomial with parameter φndk, we can use Jensen’s inequality

twice and create a bound on ζ1.

∫

4

∑

d

log(ζ1)dθ ≥
∫

4

∑

d,n,f,k

P (θ|γd)φndk log

[

P (Rndf |Zn = k, µfk, σfk)θk
P (θ|γd)φndk

P (θ|α)

]

dθ (B.2)

Secondly using Jensen’s inequality for the expectation of P (Zn = k|Rnd, θ) = φndk and

introducing a discrete variational distribution with parameters ηndk′ we can give a bound on

ζ2.
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∑

d log(ζ2) =
∏

n,k

∑

k′ P (Rnd|Yn = k′, µ
′
, σ

′
)βkk′φndk

=
∑

d,n log
[

∑

k,k′ P (Rnd|Yn = k′, µ
′
, σ

′
)βkk′φndk

]

≥∑d,n,k φndk log
[

∑

k′ P (Rnd|Yn = k′, µ
′
, σ

′
)βkk′

]

=
∑

d,n,k φndk log
[

∑

k′ P (Rnd|Yn = k′, µ
′
, σ

′
)βkk′

ηndk′

ηndk′

]

≥∑d,n,k,k′ φndkηndk′ log

[

P (Rnd|Yn=k′,µ
′
,σ

′
)βkk′ )

ηndk′

]

(B.3)

We have written P (Yn = k′|Zn = k) = βkk′ . In total we now have:

∑

d logP (Rd|µ, σ, β, α) ≥
∫

4

∑

d,n,k P (θ|γd)φndk log
[

P (Rnd|Zn=k,µfk,σfk)θk

P (θ|γd)φndk
P (θ|α)

]

dθ

+
∑

d,n,k,k′ φndkηndk′ log

[

P (Rnd|Yn=k′,µ
′
,σ

′
)βkk′

ηndk′

]

(B.4)

Expanding the logs, and using the summations
∑

k′ ηndk′ = 1 and
∑

k φndk = 1 we have:
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logL ≥
∫

4

∑

d,n,f,k P (θ|γd)φndk logP (Rndf |Zn = k, µfk, σfk)dθ

+
∫

4

∑

d,n,k P (θ|γd)φndk log(θk)dθ

+
∫

4

∑

d,n P (θ|γd) logP (θ|α)dθ

−
∫

4

∑

d,n P (θ|γd) logP (θ|γd)dθ

−
∫

4

∑

d,n,k P (θ|γd)φndk log(φndk)dθ

+
∑

d,n,f,k′ ηndk′ log
[

P (Rndf |Yn = k′, µ
′
, σ

′
)
]

+
∑

d,n,k,k′ φndkηndk′ log [βkk′ ]

−∑d,n,k′ ηndk′ log [ηndk′ ]

(B.5)

Derivation for µ, σ, α and γ

Taking the derivative of equation (B.5) with respect to µfk, including the only terms in µ

and using

P (Rndf |Zn = k, µfk, σfk) ∼ N (µfk, σfk) (B.6)

we have

∂

∂µfk





∑

d,n,f,k

φndk log

[

P (Rndf |Zn = k, µfk, σfk)θk
φndk

]



 = 0

⇒
∑

d,n

φndk(Rndf − µfk)

σ2
fk

= 0

µfk =

∑

d,n φndkRndf
∑

d′ φnd′k
(B.7)

208



B.1. HIERARCHICAL EXTENSION

Taking the derivative of equation (B.5) with respect to σfk, including the only terms in σ

we have

∂

∂σfk





∑

d,n,f,k

φndk log

[

P (Rndf |Zn = k, µfk, σfk)θk
φndk

]



 = 0

⇒
∑

d,n

(

−φndk
σfk

+
φndk(Rndf − µfk)

2

σ3
fk

)

(B.8)

σ2
fk =

∑

d,n φndk(Rndf − µfk)
2

∑

d′ φnd′k
(B.9)

Throughout the following we shall use the definition for a digamma function Ψ = d
dz log(Γ(Z)),

in terms of the Gamma function. We shall also use a consequence of general result for suffi-

cient statistics that (see [?])

E[log(θi|α)] =

∫

(θ|α) log(θi)dθ =



Ψ(αi) − Ψ(
∑

j

αj)



 (B.10)

By evaluating the integrals in the likelihood we have:

P (Rd|µ, σ, β, α) ≥∑d,n,k φndk log [P (Rnd|Zn = k, µfk, σfk)]

+
∑

d,n,k φndk [Ψ(γdk) − Ψ(
∑

k γdk)]

+
∫

4

∑

d,n P (θ|γd) log [P (θ|α)] dθ

−∑d,n φndk log [φndk]

−
∫

4

∑

d,n P (θ|γd) log [P (θ|γd)] dθ
+
∑

d,m,k,n λnmdφndk log [P (Wm|Ym = n,Zn = k, βmk)]

−∑d,m,k,n λnmd log [λnmd]

(B.11)

Evaluating the third term, we see that from the definition of a Dirichlet:
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log [P (θ|α)] = log

[

Γ(
∑

k αk)
∏

k(Γ(αk))

∏

k

θαk−1
k

]

∫

4

∑

d,n P (θ|γd) log [P (θ|α)] dθ =
∫

4

∑

d,n P (θ|γd) log [Γ(
∑

k αk)] dθ

−
∫

4

∑

d,n P (θ|γd) log [
∏

k(Γ(αk))] dθ

+
∫

4

∑

d,n P (θ|γd)
∑

k(αk − 1) log θkdθ

(B.12)

=

D
∑

d

log Γ(
∑

k

αk) −
∑

k

log [Γ(αk)] +
∑

d,k

(αk − 1)

[

Ψ(γdk) − Ψ(
∑

k′

γdk′)

]

(B.13)

Evaluating the fifth term

∫

4

∑

d,n P (θ|γd) log [P (θ|γd)] dθ =
∫

4

∑

d,n P (θ|γd) log [Γ(
∑

k γdk)] dθ

−
∫

4

∑

d,n P (θ|γd) log [
∏

k(Γ(γdk))] dθ

+
∫

4

∑

d,n P (θ|γd)
∑

k(γdk − 1) log θkdθ

(B.14)

= log Γ(
∑

k

γdk) −
∑

k

log [Γ(γdk)] +
∑

dk

(γdk − 1)

[

Ψ(γdk) − Ψ(
∑

k′

γdk′)

]

(B.15)

The only likelihood terms in α appear in equation (B.13). Taking the derivative with respect

to αi we have:
∑

d

[

Ψ(
∑

k

αk) − Ψ(αi) + Ψ(γdi) − Ψ(
∑

k′

γdk′)

]

= 0 (B.16)

It is impossible to find a first order closed form for an update of αi, so an appropriate second

order method must be used. The Newton-Raphson method used the second order Taylor

series approximation for a function and has the closed form iterative update:

Xn+1 = Xn −H−1
n .gn (B.17)
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for H the Hessian matrix, and g the gradient vector. In the case of α the gradient and Hessian

are found by taking the first and second derivatives of the likelihood:

g(α) =
∂L

∂αi
= D

[

Ψ(
∑

k

αk) − Ψ(αi)

]

+
∑

d

[

Ψ(γdi) − Ψ(
∑

k′

γdk′)

]

(B.18)

H(α) =
∂L2

∂αi∂αj
= DΨ

′

(

∑

k

αk

)

−DΨ
′
(αi)δij (B.19)

Where D =
∑

d, or the number of samples in the data.

Taking only those terms in γ:

∂
∂γdk

P (Rd|µ, σ, β, α)

= ∂
∂γdk

∑

d,n,k φndk [Ψ(γdk) − Ψ(
∑

k′ γdk′)]

+ ∂
∂γdk

∑

d,k(αk − 1) [Ψ(γdk) − Ψ(
∑

k′ γdk′)]

− ∂
∂γdk

{log Γ(
∑

k γdk) −
∑

k log [Γ(γdk)]}
+ ∂
∂γdk

{∑d,k(γdk − 1) [Ψ(γdk) − Ψ(
∑

k′ γdk′)]}
= ∂

∂γdk

∑

d,k(Ψ(γdk) − Ψ(
∑

k′ γdk′))(
∑

n φndk + αk − γdk)

− ∂
∂γdk

{log Γ(
∑

k γdk) −
∑

k log [Γ(γdk)]}
= −(Ψ(γdk) − Ψ(

∑

k′ γdk′)

+(Ψ
′
(γdk) − Ψ

′
)(
∑

k′ γdk′)(
∑

n φndk + αk − γdk)

−(Ψ(
∑

k′ γdk′ − Ψ(γdk))

= (Ψ
′
(γdk) − Ψ

′
)(
∑

k′ γdk′)(
∑

n φndk + αk − γdk)

= 0

(B.20)

Therefore, Ψ
′
(γdk) − Ψ

′
(
∑

k′ γdk′) = 0 or
∑

n φndk + αk − γdk = 0. The γdk are all strictly

greater than zero, so
∑

k′ γdk′ ≥ γdk and as the trigamma function Ψ
′
(x) is strictly monotonic

decreasing for real x ≥ 0 the first of the two possibilities cannot be zero. So the remaining

solution, and hence update is:
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γdk = αk +
∑

n

φndk (B.21)

Derivation for φ

Maximise equation (B.5) by taking the derivative with respect to φndk, subject to the con-

straint
∑

k φndk = 1. We shall also use
∫

P (θ|γdk)dθ = 1 and the identity from equation

(B.10).

∑

f log(P (Rndf |Zn = k, µfk, σfk))

+
∫

4 P (θ|γd) log(θk)dθ

−P (θ|γd) [log(φndk) + 1]

+
∑

f,k′ ηndk′ log
[

P (Rndf |Yn = k′, µ
′
, σ

′
)
]

+
∑

k′ ηndk′ log [βkk′ ]

−∑k′ ηndk′ log [ηndk′ ]

= 0

(B.22)

⇒ φndk ∝ exp
[

∑

f log [P (Rndf |Zn = k, µfk, σfk)]
]

× exp [Ψ(γdk) − Ψ(
∑

k γdk)]

× exp
∑

f,k′ ηndk′ log
[

P (Rndf |Yn = k′, µ
′
, σ

′
)
]

× exp
∑

k′ ηndk′ [log βkk′ + log ηndk′ ]

(B.23)
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Derivation for µ
′
and σ

′

Taking the derivative of equation (B.5) with respect to µ
′

fk′ , including the only terms in µ

and using

P (Rndf |Yn = k′, µ
′

fk′ , σ
′

fk′) ∼ N (µ
′

fk′ , σ
′

fk′) =
1

(2π)
1
2σ

′

fk′

exp

[

−(Rndf − µ
′

fk′)
2

2σ
′2
fk′

]

we have

∂

∂µ
′

fk′





∑

d,n,f,k′

ηndk′ log
[

P (Rndf |Yn = k′, µ
′

fk′ , σ
′

fk′)
]



 = 0

⇒
∑

d,n

ηndk′(Rndf − µ
′

fk′) = 0

µ
′

fk′ =

∑

d,n ηndk′Rndf
∑

d′ ηnd′k′
(B.24)

Taking the derivative of equation (B.5) with respect to σ
′

fk, including the only terms in σ
′

we have

∂

∂σ
′

fk′





∑

d,n,f,k′

ηndk′ log
[

P (Rndf |Yn = k′, µfk′ , σ
′

fk′)
]



 = 0

⇒
∑

d,n

(

−ηndk′
σ

′

fk′
− ηndk′(Rndf − µfk′)

2

σ
′3
fk′

)

σ
′2
fk′ =

∑

d,n ηndk′(Rndf − µfk′)
2

∑

d′ ηnd′k′
(B.25)
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Derivation for β

Taking the derivative of equation (B.5) with respect to βkk′ subject to the constraint
∑

kk′ βkk′ =

1:

∑

d,n φndkηndk′

βkk′
+ λ = 0 (B.26)

⇒ βkk′ ∝
∑

d,n

φndkηndk′ (B.27)

Derivation for η

Taking the derivative of equation (B.5) with respect to ηndk′subject to the constraint
∑

k′ ηndk′ =

1:
∑

f log(P (Rndf |Yn = k, µ
′

fk′ , σ
′

fk′))

+
∑

k φndk log βkk′

− [log ηndk′ + 1]

+λ

= 0

(B.28)

⇒ ηndk′ ∝ exp(
∑

f log(P (Rndf |Yn = k, µ
′

fk′ , σ
′

fk′)))

exp(
∑

k φndk log βkk′)

(B.29)
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