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Abstract

Background: Protein fold recognition is a key step in protein three-dimensional (3D) structure discovery. There

are multiple fold discriminatory data sources which use physicochemical and structural properties as well as further

data sources derived from local sequence alignments. This raises the issue of finding the most efficient method

for combining these different informative data sources and exploring their relative significance for protein fold

classification. Kernel methods have been extensively used for biological data analysis. They can incorporate

separate fold discriminatory features into kernel matrices which encode the similarity between samples in their

respective data sources.

Results: In this paper we consider the problem of integrating multiple data sources using a kernel-based approach.

We propose a novel information-theoretic approach based on a Kullback-Leibler (KL) divergence between the

output kernel matrix and the input kernel matrix so as to integrate heterogeneous data sources. One of the

most appealing properties of this approach is that it can easily cope with multi-class classification and multi-task

learning by an appropriate choice of the output kernel matrix. Based on the position of the output and input kernel

matrices in the KL-divergence objective, there are two formulations which we respectively refer to as MKLdiv-dc

and MKLdiv-conv. We propose to efficiently solve MKLdiv-dc by a difference of convex (DC) programming method

and MKLdiv-conv by a projected gradient descent algorithm. The effectiveness of the proposed approaches is

evaluated on a benchmark dataset for protein fold recognition and a yeast protein function prediction problem.

Conclusions: Our proposed methods MKLdiv-dc and MKLdiv-conv are able to achieve state-of-the-art performance

on the SCOP PDB-40D benchmark dataset for protein fold prediction and provide useful insights into the relative

significance of informative data sources. In particular, MKLdiv-dc further improves the fold discrimination accuracy

to 75.19% which is a more than 5% improvement over competitive Bayesian probabilistic and SVM margin-

based kernel learning methods. Furthermore, we report a competitive performance on the yeast protein function

prediction problem.
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Background

A huge number of protein coding sequences have been generated by genome sequencing projects. In contrast,

there is a much slower increase in the number of known three-dimensional (3D) protein structures. Deter-

mination of a protein’s 3D structure is a formidable challenge if there is no sequence similarity to proteins of

known structure and thus protein structure prediction remains a core problem within computational biology.

Computational prediction of protein structure has achieved significant successes [6, 15]. Focusing on

the fold prediction problem of immediate interest to this paper, one computational method known as the

taxonomic approach [10,32], presumes the number of folds is restricted and focuses on structural predictions

in the context of a particular classification of 3D folds. Proteins are in a common fold if they share the

same major secondary structures in the same arrangement and the same topological connections [3, 25]. In

the taxonomic method for protein fold classification, there are several fold discriminatory data sources or

groups of attributes available such as amino acid composition, predicted secondary structure, and selected

structural and physicochemical properties of the constituent amino acids. Previous methods for integrating

these heterogeneous data sources include simply merging them together or combining trained classifiers

over individual data sources [8, 10, 11, 32]. However, how to integrate fold discriminatory data sources

systematically and efficiently, without resorting to ad hoc ensemble learning, still remains a challenging

problem.

Kernel methods [30, 31] have been successfully used for data fusion in biological applications. Kernel

matrices encode the similarity between data objects within a given input space and these data objects

can include graphs and sequence strings in addition to real-valued or integer data. Thus the problem of

data integration is transformed into the problem of learning the most appropriate combination of candidate

kernel matrices, representing these heterogeneous data sources. The typical framework is to learn a linear

combination of candidate kernels. This is often termed multiple kernel learning (MKL) in Machine Learning,

and non-parametric group lasso in Statistics. Recent trends in kernel learning are usually based on the

margin maximization criterion used by Support Vector Machines (SVMs) or variants [21]. The popularity of

SVM margin-based kernel learning stems from its efficient optimization formulations [5,21,28,34] and sound

theoretical foundation [4, 21, 45]. Other data integration methods include the COSSO estimate for additive

models [24], kernel discriminant analysis [42], multi-label multiple kernel learning [43, 44] and Bayesian

probabilistic models [9, 12]. These methods, in general, can combine multiple data sources to enhance

biological inference [9, 22] and provide insights into the significance of the different data sources used.

Following a different approach, in this paper we propose an alternative criterion for kernel matrix learning

and data integration, which we will call MKLdiv. Specifically, we propose an information-theoretic approach

to learn a linear combination of kernel matrices, encoding information from different data sources, through

the use of a Kullback-Leibler divergence [18, 20, 35, 37, 38] between two zero-mean Gaussian distributions

defined by the input matrix and output matrix. The potential advantage of this approach is that, by

choosing different output matrices, the method can be easily extended to different learning tasks, such as

multi-class classification and multi-task learning. These are common tasks in biological data analysis.

To illustrate the method, we will focus on learning a linear combination of candidate kernel matrices

(heterogeneous data sources) using the KL-divergence criterion with a main application to the protein fold

prediction problem. There are two different formulations based on the relative position of the input kernel

matrix and the output kernel matrix in the KL-divergence objective. For the first formulation, although this
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approach involves a matrix determinant term which is not convex in general, we elegantly reformulate the

learning task as a difference of convex problem, which can be efficiently solved by a sequence of convex opti-

mizations. Hence we refer to it as MKLdiv-dc. The second KL-divergence formulation for kernel integration,

called MKLdiv-conv, is convex and can be solved by a projected gradient descent algorithm. Experimental

results show that these formulations lead to state-of-the-art prediction performance. In particular, MKLdiv-

dc outperforms the best reported performance on the important task of protein fold recognition, for the

benchmark dataset used.

Methods

In the following we first revisit kernel learning approaches based on SVMs [21] and kernel discriminant

analysis [42]. Then, we introduce our novel information-theoretic approach for data integration based on a

KL-divergence criterion. Finally we discuss how to solve the optimization task efficiently. For brevity, we

use the conventional notation Nn = {1, 2, . . . , n} for any n ∈ N.

Background and Related Work

Kernel methods are extensively used for biological data analysis. A symmetric function K : X × X → R

is called a kernel function if it is positive semi-definite, by which we mean that, for any n ∈ N and {xi ∈

X : i ∈ Nn}, the Gram matrix (K(xi, xj))i,j∈Nn
is positive semi-definite. According to [2], its corresponding

reproducing kernel Hilbert space (RKHS), usually denoted by HK , can be defined to be the completion

of the linear span of the set of functions {Kx(·) := K(x, ·) : x ∈ X} with inner product satisfying, for

any x ∈ X and g ∈ HK , the reproducing property 〈Kx, g〉K = g(x). By Mercer’s theorem, there exists a

high dimensional (possible infinite) Hilbert feature space F with inner product 〈·, ·〉F and a feature map

φ : X → F such that K(x, t) = 〈φ(x), φ(t)〉F , ∀x, t ∈ X. Intuitively, the kernel function K implicitly maps

the data space X into a high dimensional space F , see [30, 31] for more details.

Within the context of protein fold recognition, we have m different fold discriminatory data sources where

samples across each data source can be represented by x` = {x`
i : i ∈ Nn} for ` ∈ Nm and the outputs are

denoted by y = {yi : i ∈ Nn}. For kernel methods, for any ` ∈ Nm, each `-th data source can be encoded

into a candidate kernel matrix denoted by K` = (K`(x
`
i , x

`
j))ij . Depending on the different data sources

used, the candidate kernel function K` should be specified a priori by the practitioner. The composite kernel

matrix is given by Kλ =
∑

`∈Nm
λ`K` where {λ` : ` ∈ Nm} are real-valued kernel weights and typically they

are restricted to be non-negative. In this context, the problem of data integration is consequently reduced

to the problem of learning a convex combination of candidate kernel matrices: more precisely learning the

kernel weights λ. Different optimization criteria over the candidate kernels arise from the particular kernel

learning algorithm used. Cristianini et al. [19] proposed a kernel learning approach which uses the cosine

of the angle between the two bi-dimensional vectors Kλ and Ky representing the Gram matrices. This is

achieved by maximizing the kernel alignment:

〈Kλ,Ky〉√
〈Kλ,Kλ〉 〈Ky,Ky〉

.

The above kernel learning formulation can be solved by a semi-definite programming (SDP) approach (see

Section 4.7 of [21]). However, an SDP formulation is computationally intensive.
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Another widely used criterion for kernel learning is based on the margin concept in SVMs and variants.

Denoting the simplex set as 4 =
{
λ = (λ1, λ2, . . . , λm) :

∑
`∈Nm

λ` = 1, λ` ≥ 0
}
, Lanckriet et al [21]

proposed the following formulation for kernel learning:

min
λ∈4

Ω(Kλ) = min
λ∈4

max{α>1n −
1

2
α>diag(t)Kλdiag(t)α : 0 ≤ α ≤ C, and α>t = 0}, (1)

where 1n is a column vector of all ones, C is a trade-off parameter, and t = (t1, t2, . . . , tn) denotes the

binary outputs with ti ∈ {1,−1} being the class label for i-th instance. This task was reformulated as a

quadratically constrained quadratic programming (QCQP) problem and later improved by Sonnenburg et

al. [34] who reformulated it as a semi-infinite linear programming (SILP) task. Moreover, it was pointed out

in [5, 24, 26, 28] that this is equivalent to the following sparse L1-regularization formulation:

min
f`∈HK`

,`∈Nm

C
∑

i∈Nn

(
1 − ti

∑

`∈Nm

f`(x
`
i)

)
+

+
1

2

( ∑

`∈Nm

‖f`‖K`

)2

. (2)

The L1-regularization term
∑

`∈Nm
‖f`‖K`

encourages the sparsity [14] of RKHS-norm terms, and thus

indicates the relative importance of data sources. It was shown in [28] that the standard L2-regularization
∑

`∈Nm
‖f`‖2

K`
is equivalent to the use of uniformly weighted kernel weights λ, i.e. λ` = 1

m
for any ` ∈

Nm. Recently, Ye et al. [42] proposed an appealing kernel learning approach based on regularized kernel

discriminant analysis. This can similarly be shown to be equivalent to a sparse L1-regularization formulation

with a least square loss, see more details in Additional file 2.

Information-theoretic Data Integration

In this paper we adopt a novel information-theoretic approach to learn the kernel combinatorial weights.

The main idea is to quantify the similarity between Kλ and Ky through a Kullback-Leibler (KL) divergence

or relative entropy term [18, 20, 35, 37, 38]. This approach is based on noting that these kernel matrices

encode the similarity of data objects within their respective input and label data spaces. Furthermore, there

is a simple bijection between the set of distance measures in these data spaces and the set of zero-mean

multivariate Gaussian distributions [20]. Using this bijection, the difference between two distance measures,

parameterized by Kλ and Ky, can be quantified by the relative entropy or Kullback-Leibler (KL) divergence

between the corresponding multivariate Gaussians. Matching kernel matrices Kλ and Ky can therefore be

realized by minimizing a KL divergence between these distributions and we will exploit this approach below

in the context of multiple kernel learning.

Kernel matrices are generally positive semi-definite and thus can be regarded as the covariance matrices

of Gaussian distributions. As described in [18], the Kullback-Leibler (KL) divergence (relative entropy)

between a Gaussian distribution N (0,Ky) with the output covariance matrix Ky and a Gaussian distribution

N (0,Kx) with the input kernel covariance matrix Kx is:

KL
(
N (0,Ky)||N (0,Kx)

)
:=

1

2
Tr(KyK

−1
x

) +
1

2
log |Kx| −

1

2
log |Ky| −

n

2
. (3)

where, for any square matrix B, the notation Tr(B) denotes its trace. The a priori choice of the output

matrix Ky will be discussed later. Though KL
(
N (0,Ky)||N (0,Kx)

)
is non-convex w.r.t. Kx, it has a

unique minimum at Kx = Ky if Ky is positive definite, suggesting that minimizing the above KL-divergence
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encourages Kx to approach Ky. If the input kernel matrix Kx is represented by a linear combination of m

candidate kernel matrices, i.e. Kx = Kλ =
∑

`∈Nm
λ`K`, the above KL-divergence based kernel learning is

reduced to the following formulation:

argminλ∈4 KL(N (0,Ky)||N (0,Kλ))

= argminλ∈4 Tr
(
Ky(

∑
`∈Nm

λ`K` + σIn)−1
)

+ log
∣∣∣
∑

`∈Nm
λ`K` + σIn

∣∣∣, (4)

where In denotes the n × n identity matrix and σ > 0 is a supplemented small parameter to avoid the

singularity of Kλ.

Since the KL-divergence is not symmetric with respect to Ky and Kλ, another alternative approach to

matching kernel matrices is given by

argminλ∈4 KL(N (0,Kλ)||N (0,Ky))

= argminλ∈4
∑

`∈Nm
λ`Tr

(
(Ky + σIn)−1K`

)
− log

∣∣∣
∑

`∈Nm
λ`K` + σIn

∣∣∣, (5)

where parameter σ > 0 is to avoid the singularity of Ky. If there is no positive semi-definiteness restriction

over K`, this formulation is a well-known convex maximum-determinant problem [39] which is a more general

formulation than semi-definite programming (SDP), its implementation is computationally intensive, and

thus cannot be extended to large-scale problems according to [39]. However, formulation (5) has a special

structure here: λ` is non-negative and all candidate kernel matrices are positive semi-definite. Hence, we

can solve this problem by a simple projected gradient descent method, see below for more details.

The KL-divergence criterion for kernel integration was also successfully used in [37,38] which formulated

the problem of supervised network inference as a kernel matrix completion problem. In terms of information

geometry [1], formulation (4) corresponds to finding the m-projection of Ky over an e-flat submanifold. The

convex problem (5) can be regarded as finding the e-projection of Ky over a m-flat submanifold. In [35],

formulation (4) was developed for learning an optimal linear combination of diffusion kernels for biological

networks. A gradient-based method was employed in [35] to learn a proper linear combination of diffusion

kernels. This optimization method largely relies on the special property of all candidate diffusion kernel

matrices enjoying the same eigenvectors and the gradient-based learning method could be a problem if we

deal with general kernel matrices. In the next section, we propose to solve the general kernel learning

formulation (4) using a difference of convex optimization method.

The formulation (4) also has a close relation with Gaussian Process regression [29]. A Gaussian process

f can be fully specified by giving the covariance matrix for any finite set of zero-mean random variables

f = {f(xi) : i ∈ Nm}. The relation between the inputs x = {xi : i ∈ Nn} and outputs y = {yi : i ∈ Nm} is

realized by the latent variable f as follows:

y|f ,x ∼ N (y|f , σIn)

where In denotes the n × n identity matrix and the latent random variable f = (f(x1, . . . , f(xn))) is dis-

tributed as a Gaussian process prior. The Gaussian process prior can be fully specified by a kernel K with

a random covariance matrix K = (K(xi, xj))i,j∈Nn
associated with random samples x = {xi : i ∈ Nn}.

Specifically, it can be written as f |x ∼ N (f | 0,Kλ)1. If we let Ky = yy> in the objective function of

1We assume that a uniform distribution over λ, i.e. a Dirichlet prior distribution λ ∼

∏m
`=1 λ

α0−1
` with α0 = 1.
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formulation (4), then one can easily check that, up to a constant term, the objective function in formulation

(4) is the negative of the log likelihood of Gaussian process regression, and maximizing the log likelihood is

equivalent to the minimization problem (4).

Optimization Formulation

We now turn our attention to optimization approaches for the KL-divergence based kernel learning formu-

lations (4) and (5). In particular, we show that formulation (5) can be approached by a projected gradient

descent method and (4) can be solved by a difference of convex algorithm (DCA) [36] which, for linear

constraint conditions, reduces to the special case of a concave convex procedure (CCCP) [46]. To this end,

let

g(λ) := − log
∣∣ ∑

`∈Nm

λ`K` + σIn

∣∣ (6)

and

f(λ) := Tr
(
Ky(

∑

`∈Nm

λ`K` + σIn)−1
)
. (7)

Theorem 1 Let functions g and f be defined by (6) and (7). Then, both f and g are convex with respect to

λ ∈ 4. Moreover, problem (5) is convex and problem (4) is a difference of convex problem, i.e.

min
λ∈4

L(λ) := f(λ) − g(λ). (8)

Proof It suffices to prove the convexity of f and g. To see this end, from [7] we observe that functions

− log |C| and Tr
(
KyC

−1
)

are convex with respect to positive semi-definite matrices C. Hence, f and g are

convex with respect to λ ∈ 4. This completes the proof of the theorem. �

For simplicity we refer to the KL-divergence kernel learning formulation (4) as MKLdiv-dc since it is a

difference of convex problem and refer to formulation (5) as MKLdiv-conv since it is a convex problem.

Projected Gradient Descent Method for MKLdiv-conv

We propose a projected gradient descent (PGD) method to solve problem (5). The idea of this method is to

alternately implement a gradient descent and then a projection to the feasible domain, see e.g. [27]. Recall

the derivative of the log determinant2

∂g(λ)

∂λj

= −Tr
(
(

∑

`∈Nm

λ`K` + σIn)−1Kj

)
. (9)

With a little abuse of notation, we also denote by L the objective function of problem (5). Consequently, its

gradient is given by

∂L(λ)

∂λj

= Tr((Ky + σIn)−1Kj) − Tr
(
(

∑

`∈Nm

λ`K` + σIn)−1Kj

)
. (10)

Then, at iteration step t the gradient descent step is realized by

β(t) = λ(t) − η∇L(λ(t)),

2See e.g. the matrix cookbook http://matrixcookbook.com/
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where η > 0 is a prescribed step size. The projection of β to the feasible domain 4 can be written as the

following quadratic programming problem

λ(t+1) = arg min
λ∈4

‖β(t) − λ‖2. (11)

The theoretical convergence rate of the projected gradient descent method is generally of complexity O( L√
t
)

where t is the iteration number and L is the Lipschitz constant of the gradient function defined by (10),

see e.g. [27]. Here, the Lipschitz constant L is bounded by the largest eigenvalue of the Hessian H(L) =

((H(L))ij∈Nm
) of the objective function defined, for any i, j ∈ Nm, by

(H(L))ij :=
∂L(λ)

∂λiλj

= Tr((
∑

`∈Nm

λ`K` + σIn)−1Ki(
∑

`∈Nm

λ`K` + σIn)−1Kj).

Since L is convex, the Hessian H(L) is positive semi-definite and thus

L ≤ supλ∈4
∑

j∈Nm
Tr((

∑
`∈Nm

λ`K` + σIn)−1K`(
∑

`∈Nm
λ`K` + σIn)−1Kj)

= supλ∈4
∑

j∈Nm
‖(

∑
`∈Nm

λ`K` + σIn)−1Kj‖2
Fro

≤ supλ∈4
∑

j∈Nm
‖(

∑
`∈Nm

λ`K` + σIn)−1‖2
Fro‖Kj‖2

Fro ≤ n
∑

j∈Nm
‖Kj‖2

Fro

/
σ2,

(12)

where ‖ · ‖Fro denotes the Frobenious norm of a matrix. Hence, the projected gradient descent algorithm

could take longer time to become convergent if the value of σ is very small.

Difference of Convex Algorithm for MKLdiv-dc

By Theorem 1, problem (4) is a difference of convex problem. We propose to solve this problem by a concave

convex procedure (CCCP) [36, 46]. This procedure iteratively solves the following convex problem:

λ(t+1) = arg min
λ∈4

f(λ) − g(λ(t)) −∇g(λ(t))(λ − λ(t)), (13)

where, for any j ∈ Nm, the derivative of the log determinant is given by equation (9). Before we continue

the main discussion, let us first note an interesting property of CCCP. By the definition of λ(t+1), we know

that
L(λ(t)) = f(λ(t)) − g(λ(t)) = f(λ(t)) − g(λ(t)) −∇g(λ(t))(λ(t) − λ(t))

≥ minλ∈4 f(λ) − g(λ(t)) −∇g(λ(t))(λ − λ(t))

= f(λ(t+1)) − g(λ(t)) −∇g(λ(t))(λ(t+1) − λ(t)).

Since g is convex, we have that

−g(λ(t)) −∇g(λ(t))(λ(t+1) − λ(t)) ≥ −g(λ(t+1)).

Consequently,

L(λ(t)) = f(λ(t)) − g(λ(t)) ≥ f(λ(t+1)) − g(λ(t+1)) = L(λ(t+1)), (14)

which means that the objective value L(λ(t)) monotonically decreases with each iteration. Consequently, we

can use the relative change of the objective function as a stopping criterion. Local convergence of the DCA

algorithm is proven in [36] (Lemma 3.6, Theorem 3.7). Tao and An [36] state that the DCA often converges

to the global solution. Overall, the DC programming approach to MKLdiv-dc can be summarized as follows.
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• Given a stopping threshold ε

• Initialize λ(1), e.g. λ
(1)
` = 1

m
for any ` ∈ Nm

• Given the solution λ(t) at step t, for step t+1, first compute ∇g(λ(t)) by equation (9). Then, compute

solution λ(t+1) of convex subproblem (13).

• Stop until the relative change L(λ(t))−L(λ(t+1))

L(λ(t+1) ≤ ε where ε is a stopping threshold

SILP Formulation for Convex Subproblem (13)

We now turn to the solution of the convex subproblem (13). To see this, first decompose the output matrix

Ky into the form Ky = AA>, e.g. by eigen-decomposition. Here, A is an n × r matrix with r = rank(A)

which always exists since Ky is positive semi-definite. Hence, by introducing an auxiliary matrix α ∈ R
n×r,

we observe, for any positive definite matrix C, that

max
α

2Tr(α>A) − Tr(α>Cα) = Tr(A>C−1A) = Tr(AA>C−1).

Applying the above equality with C =
∑

`∈Nm
λ`K` + σIn, up to a constant, equation (13) is equivalent to

the augmented problem:

min
λ∈4

max
α

2Tr(α>A) − Tr(α>(
∑

`∈Nm

λ`K` + σIn)α) −∇g(λ(t))λ.

Equivalently, by the min-max theorem (see e.g. [7])

max
λ∈4

min
α

−2 Tr(α>A) + Tr(α>(
∑

`∈Nm

λ`K` + σIn)α) + ∇g(λ(t))λ. (15)

To solve the subproblem (15), we can formulate it as a quadratically constrained quadratic programming

(QCQP) problem as in [21]. Here we formulate the problem in (15) as a semi-infinite linear program-

ming (SILP) problem [13, 34] since SILP usually has better scalability compared to QCQP. To see this, let

S`(α) = Tr
(
αα>K`

)
+ ∂g(λ(t))

∂λ`
, and S0(α) = −2Tr(α>A)+σTr(α>α). Then, letting γ = minα −2 Tr(α>A)+

Tr(α>(
∑

`∈Nm
λ`K` + σIn)α) + ∇g(λ(t))λ, we can rewrite (15) as a SILP problem:

maxγ,λ γ
s.t.

∑m
`=1 λ` = 1, λ` ≥ 0

γ −
∑m

`=1 λ`S`(α) ≤ S0(α), ∀α
(16)

In (16), there are an infinite number of constraints (indexed by α), indicative of a semi-infinite linear

programming (SILP) problem. The SILP task can be solved by an iterative column generation algorithm (or

exchange method) which is guaranteed to converge to a global optimum. A brief description of the column

generation method is illustrated in Additional file 1.

Alternatively we could apply the projected gradient descent (PGD) method in the above subsection

directly to the convex subproblem (13). However, the gradient function of its objective function involves

the matrix (
∑

`∈Nm
λ`K` + σIn)−1. In analogy to the argument of inequality (12), the Lipschitz constant

of the gradient of the objective function in (13) is very large when the value of σ is very small, and thus
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the projected gradient descent algorithm could take longer to become convergent. Hence, this could make

the overall DC programming unacceptable slow. In contrast, in the SILP formulation (16) we introduce

the auxiliary variables α to avoid the matrix (
∑

`∈Nm
λ`K` + σIn)−1. In addition, the gradient descent

algorithm generally needs to determine the step size η according to the value of σ, see also discussion in the

experimental section.

Prior Choice of the Output Matrix Ky

The choice of the output matrix Ky will depend on the problem considered. We first consider a multi-

class classification for the specific task of protein fold recognition. In this case, we preprocess the output

labels using a one-against-all strategy. In particular, for a C-class classification we recast the outputs

y = {yi : i ∈ Nn} as (yi1, . . . , yiC) such that yip = 1 if xi is in class p and otherwise −1. Hence the outputs

are represented by an n×C indicator matrix Y = (yip)i,p whose p-th column vector is denoted by yp. Then,

taking Ky = YY>, formulation (4) can be extended to the joint optimization problem

min
λ∈4

L(λ) :=
∑

p∈NC

y>
p (

∑

`∈Nm

λ`K` + σIn)−1yp + log
∣∣∣

∑

`∈Nm

λ`K` + σIn

∣∣∣. (17)

and formulation (5) can be written as

min
λ∈4

L(λ) :=
∑

p∈NC

y>
p (

∑

`∈Nm

λ`Tr
(
(Ky + σIn)−1Ky

)
yp − log

∣∣∣
∑

`∈Nm

λ`K` + σIn

∣∣∣. (18)

For the protein fold recognition and yeast protein function prediction projects discussed below, we choose

Ky = YY> as stated.

In general, though, Ky might encode a known structural relationship between labels. For example, in

supervised gene or protein network inference (see e.g. [16, 41]) the output information corresponds to an

adjacency (square) matrix A where Aij = 1 means there is an interaction between gene or protein pair

(ei, ej) of an organism, otherwise Aij = 0. In this case, the output kernel matrix Ky can potentially be

chosen as the graph Laplacian defined as L = diag(A1)−A, where 1 is the vector of all ones. It can also be

formulated as a diffusion kernel [17] defined by eβL = I + βL + β2

2 L2 + β3

3! L
3 + . . . , where hyper-parameter

β > 0. Other potential choices of Ky can be found in [43, 44] for multi-labeled datasets.

Results and Discussion

We mainly evaluate MKLdiv methods (MKLdiv-dc and MKLdiv-conv) on protein fold recognition, and

then consider an extension to the problem of yeast protein function prediction. In these tasks we first

compute the kernel weights by MKLdiv and then feed these into a one-against-all multi-class SVM to make

predictions. The trade-off parameter in the multi-class SVM is adjusted by 3-fold cross validation over the

training dataset. For all experiments with MKLdiv-dc, we choose σ = 10−5 and for MKLdiv-conv, we tune

σ = {10−5, . . . , 10−1} using cross validation. In both methods, we use a stopping criterion of ε = 10−5 and

initialize the kernel weight λ by setting λ` = 1
m

for any ` ∈ Nm where m is the number of candidate kernel

matrices.
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Synthetic Data

We first validated the proposed MKLdiv algorithms on a simple three-class dataset illustrated in subfigure

(a) of Figure 1. As in [21], we use a Gaussian kernel with unit variance, a polynomial kernel of order two

and a linear kernel. In this case we demonstrate the effect of our approaches on combining kernel matrices

derived from a single data source. Subfigures (e) and (f) of Figure 1 illustrate the kernel weights learned

by MKLdiv-dc and MKLdiv-conv. In particular, MKLdiv-dc successfully picked up the Gaussian kernel as

the most dominant kernel, which is more reasonable than MKLdiv-conv. Subfigures (b) and (c) of Figure

1 show the relative change of objective function values versus iteration, i.e. (L(λ(t−1)) − L(λ(t)))
/
L(λ(t)),

of MKLdiv-dc and MKLdiv-conv. We can see that the DC algorithm of MKLdiv-dc converges quickly to a

local minimum while the projected gradient descent algorithm converges a little slower to a global minimum.

However, MKLdiv-dc needs more time per iteration than MKLdiv-conv since MKLdiv-dc needs to solve the

subproblem (13) at each iteration. As mentioned before, the subproblem (13) can be solved by either semi-

infinite linear programming (SILP) or a projected gradient descent (PGD) method. To see their convergence,

in subfigure (d) of Figure 1 we plot the relative changes of the objective function in subproblem (13) when

λ
(t)
` = 1/m for ` ∈ Nm. We can see from subfigure (d) that the PGD approach converges faster in the

beginning but stalls at a higher precision and the SILP method converges faster at higher precision.

Protein Fold Recognition

Next we evaluated MKLdiv on a well-known protein fold prediction dataset [10]. This benchmark dataset

(based on SCOP PDB-40D) has 27 SCOP fold classes with 311 proteins for training and 383 for testing.

This dataset was originally proposed by Ding and Dubchak [10] and it has 313 samples for training and

385 for testing. There is less than 35% sequence identity between any two proteins in the training and

test set. We follow Shen and Chou [32] who proposed to exclude two proteins from the training and test

datasets due to a lack of sequence information. We compare our MKLdiv methods with kernel learning

based on one-against-all multiclass SVM using the SimpleMKL software package [33], kernel learning for

regularized discriminant analysis (MKL-RKDA) [42] (http://www.public.asu.edu/ jye02/Software/DKL/)

and a probabilistic Bayesian model for kernel learning (VBKC) [9]. The trade-off parameters in SimpleMKL

and MKL-RKDA were also adjusted by 3-fold cross validation on the training set.

Description of the Fold Discriminatory Data Sources

As listed in Table 1, there are a total of 12 different fold discriminatory data sources available: Amino

Acid Composition (C), Predicted Secondary Structure (S), Hydrophobicity (H), Polarity (P), van der Waals

volume (V), Polarizability (Z), PseAA λ = 1 (L1), PseAA λ = 4 (L4), PseAA λ = 14 (L14), PseAA λ = 30

(L30), SW with BLOSUM62 (SW1) and SW with PAM50 (SW2). The first six data sources were originally

from [10]. Four data sources using different dimensions of pseudo-amino acid composition (PseAA) were

introduced in [32] to replace the amino-acid composition. The last two data sources used in [9] are derived

from a pairwise kernel [23] for local sequence alignment based on Smith-Waterman scores.

As in [9], we employ linear kernels (Smith-Waterman scores) for SW1 and SW2 and second order poly-

nomial kernels for the other data sources. Ding and Duchbak [10] conducted an extensive study on the

use of various multi-class variants of standard SVMs and neural network classifiers. For these authors the
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best test set accuracy (TSA) was 56%, and the most informative among their six data sources (CSHPVZ)

were amino-acid composition (C), the predicted secondary structure (S) and hydrophobicity (H). Shen and

Chou [32] introduced four additional PSeAA data sources to replace the amino acid composition (C) and

raised test performance to 62.1%. The latter authors used an ad hoc ensemble learning approach involving

a combination of multi-class k nearest neighbor classifiers individually trained on each data source. Re-

cently, test performance was greatly improved by Damoulas and Girolami [9] using a Bayesian multi-class

multi-kernel algorithm. They reported a best test accuracy of 70% on a single run.

Performance with Individual and All Data Sources

We ran MKLdiv-dc, MKLdiv-conv, SimpleMKL and MKL-RKDA on the overall set of 12 data sources,

also evaluating performance on a uniformly weighted (averaged) composite kernel in addition to individual

performance on each separate data source. In Table 1 we report the test set accuracy on each individual

data source. The performance of MKLdiv-dc and MKLdiv-conv inclusive of all data sources achieves a

test set accuracy of 73.36% and 71.01% respectively, consistently outperforming all individual performances

and the uniformly weighted composite kernel (68.40%). Moreover, individual performance for MKLdiv-dc,

SimpleMKL and MKL-RKDA indicates that the most informative data sources are local sequence alignments

(SW1 and SW2) and the amino acid composition (C). The performance with individual data sources for

MKLdiv-dc, MKLdiv-conv, and SimpleMKL are almost the same since, for a fixed kernel, they use the same

one-against-all multi-class SVM.

From Table 1, performances of MKLdiv-dc and MKLdiv-conv with all the available data sources achieve

test set accuracies of 73.36% and 71.01%, both of which outperform the state-of-art performance 70% on

a single run reported in [9] and other kernel learning methods including SimpleMKL (66.57%) and MKL-

RKDA (68.40%). The performance of the uniformly weighted kernel is 68.14% which is better than the

performance 66.57% of SimpleMKL. This indicates that sparse L1-regularization does not necessarily yield

better performance. The kernel weights λ of MKLdiv-dc, SimpleMKL, and MKL-RKDA are shown in

subfigures (b), (e) and (g) of Figure 2 which indicates that Amino Acid Composition (C), predicted secondary

structure (S), Hypdrophobicity (H), and the last two data sources SW1 and SW2 are the most informative

data sources, and the remaining data sources of H,P, V, and PseAA are less informative. As depicted in

the subfigure (b) of Figure 2, MKLdiv-dc and MKLdiv-conv include some less informative data sources such

as PZL1,L4,L14,L30 etc., with small (but not zero) kernel weights. In contrast, as shown in (e) and (g) of

Figure 2, SimpleMKL and MKL-RKDA completely discard these less informative data sources. However,

as shown in (d) and (f) of Figure 2, SimpleMKL and MKL-RKDA achieve poorer performance, less than

70%, while MKLdiv-dc achieves 73.36% and MKLdiv-conv achieves 71.01%. This suggests that MKLdiv-dc

provides a more reasonable balance over the entire set of data sources. This observation also suggests that

achieving a sparsity among kernel weights does not necessarily guarantee good generalization performance

since some available data sources may be weakly informative but may still carry some useful additional

information.
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Performance with Sequential Addition of Data Sources

As mentioned above, the kernel weights learned by MKLdiv on all the data sources can provide useful insights

into the significance of informative data sources. Hence, we further investigated the effect of sequentially

adding data sources based on information from learned kernel weights in Tables 2 and 3. Without loss of

generality, we take the kernel weights learned by MKLdiv-dc as an example.

We first report in Table 2 the effect of sequentially adding the sources in the order which was used in [10]

and [9] and MKLdiv-dc and MKLdiv-conv consistently outperform the competitive kernel learning methods

VBKC, SimpleMKL, MKL-RKDA and the best performing SVM combination methodology stated in [10].

As suggested by the kernel weights of MKLdiv-dc in the subfigure (b) of Figure 2, the sequence alignment

based data source SW1 is most informative, then S, then SW2 and so on. Hence, in Table 3 we further

report the effect of sequentially adding data sources in this rank order. As shown in Table 3, there is a

significant improvement over SW1SW2 in MKLdiv-dc when we sequentially add the data sources of amino

acid composition (C) and predicted secondary structure (S). The performance of MKLdiv-dc keeps increasing

until we include CSHPZ, giving the best performance of 75.19%. Although according to [32], the PseAA data

sources are believed to contain more information than the conventional amino acid composition. The same

behaviour appears for MKLdiv-conv. However, the MKLdiv-dc performance degenerates if we continue to

add PseAA composition data sources and the same behaviour appears for MKLdiv-conv. Similar observations

were made by [9] which suggests that PseAA measurements may carry non-complementary information with

the conventional amino acid compositions.

With regard to the best performance of MKLdiv-dc with the feature set SW1SW2CSHPZ, we display

the corresponding kernel weights in Figure 3. We can see in Figure 3 that SimpleMKL and MKL-RKDA

almost eliminate the informative feature set HPZ while MKLdiv-dc and MKLdiv-conv include them into

the composite kernel. The sparse L1-regularization of SimpleMKL and MKL-RKDA accounts for the sparse

weights of SimpleMKL and MKL-RKDA.

Comparison of Running Time

Toinvestigate the run-time efficiency of MKLdiv on protein fold recognition dataset, we list their CPU time

in Tables 2 and 3. The running time (in seconds) is the term inside the parenthesis. The SILP approach for

MKL-RKDA is very efficient while SimpleMKL takes a bit longer. The reason could be that MKL-RKDA

essentially used the least-square loss for multi-class classification in contrast to the one-against-all SVM used

in SimpleMKL. Generally, more time is required to run the interior method for one-against-all SVM than

directly computing the solution of the least-square regression. The projected gradient descent method for

MKLdiv-conv is also slower than MKL-RKDA. It is to be expected that MKLdiv-conv converges faster than

MKLdiv-dc since the DC algorithm for MKLdiv-dc is non-convex and it needs to solve the subproblem (13)

in each iteration of CCCP. Nevertheless, the price we paid in running time for MKLdiv-dc is worthwhile

given its significantly better performance on the protein fold prediction problem.

Sensitivity against Parameter σ

The initial purpose of introducing σ is to avoid the singularity of the input kernel matrix or the output

kernel matrix. However, in practice we found that, in the convex formulation MKLdiv-conv, values of σ
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have a great influence on performance for protein fold recognition. Hence, when we ran MKLdiv-conv, we

always did cross validation over the training set to select the parameter σ. To see how sensitive the test set

accuracy is with respect to σ, in Figure 4 we depicted the test set accuracy versus values of σ. In Figure 4

we can observe that the test set accuracy of MKLdiv-dc is relatively stable for small values of σ’s. However,

this is not the case for MKLdiv-conv and generally suggests that the parameter σ has a great impact on

performance of MKLdiv-conv. This could be because the output kernel matrix Ky = YY> is of low rank

(rank one in binary classification) and thus adding a small matrix σIn in the formulation MKLdiv-conv could

dramatically change the information of the output kernel matrix. In contrast, we can reasonably assume the

input kernel matrices are non-singular or not of low rank and the effect of adding a small matrix σIn in the

formulation MKLdiv-dc can be ignored.

Extension of Investigation to Yeast Protein Classification

We next extend our investigation of MKLdiv-dc and MKLdiv-conv on a yeast membrane protein classification

problem [22]. This binary classification task has 2316 examples derived from the MIPS comprehensive Yeast

Genome Database (CYGD) (see [47]). There are eight kernel matrices (http://noble.gs.washington.edu/proj/

sdp-svm/). The first three kernels (KSW, KB, and KPfam) are respectively designed to measure the

similarity of protein sequences using BLAST, Smith-Waterman pairwise sequence comparison algorithms and

a generalization of pairwise comparison method derived from hidden Markov models. The fourth sequence-

based kernel matrix (KFFT) incorporates information about hydrophobicity which is known to be useful in

identifying membrane proteins, computed by Fast Fourier Transform. The fifth and sixth kernel matrices

(KLI, KD) are respectively derived from linear and diffusion kernels based on protein-protein interaction

information. The seventh kernel matrix (KE) is a Gaussian kernel encoding gene expression data. Finally,

we added a noise kernel matrix KRan generated by first generating random numbers and then using a linear

kernel.

The performance of MKLdiv-dc and MKLdiv-conv is evaluated by 10 random partitions of the data into

a training and test set in a proportion of 4 : 1. We report the receiver operating characteristic (ROC) score,

which measures the overall quality of the ranking induced by the classifier, rather than the quality of a

single point in that ranking. The first subfigure of Figure 5 shows the performance with individual kernels

and the performance of MKLdiv-dc (the third to last bar), MKLdiv-conv (the next to last bar), and the

uniformly weighted kernel (last bar). Specifically, MKLdiv-dc yields a ROC score of 0.9189±0.0171 which is

competitive with the result in [22]. MKLdiv-conv, however, achieved a ROC score of 0.9016± 0.0161 which

is worse than MKLdiv-dc. The performance of MKLdiv-dc is also slightly better than the performance of

the uniformly weighted kernel 0.9084 ± 0.0177 excluding the noise kernel and 0.8979± 0.0120 including the

noise kernel. We also plot the kernel weights on (b) and (c) of Figure 5. As expected, in MKLdiv-dc the

BLAST kernel (KB) derived from the protein sequence similarity comparison is very informative which is

consistent with [22]. The derived kernel weights also show that the interaction-based diffusion kernel is more

informative than the expression kernel, which is consistent with [22]. Also, it is interesting to note that

MKLdiv-dc shows that the noise kernel (KRan) is least informative. This is indicated by its individual

ROC score: a ROC score around 0.5 corresponds to random ranking. The kernel weights of MKLdiv-conv

indicate that the diffusion kernel (D) is the most important data source, and also suggest that Pfam and
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FFT are almost non-informative regardless of their good individual performances. For the kernel weights,

MKLdiv-dc are more reasonable than MKLdiv-conv since MKLdiv-dc is more consistent with the individual

data source’s performance and MKLdiv-dc outperforms MKLdiv-conv using all data sources.

Conclusion

In this paper we developed a novel information-theoretic approach to learning a linear combination of kernel

matrices based on the KL-divergence [18, 20, 35, 37, 38], especially focused on the protein fold recognition

problem. Based on the different position of the input kernel matrix and the output kernel matrix in the KL-

divergence objective, there are two formulations. The first one is a difference of convex (DC) problem termed

MKLdiv-dc and the second formulation is a convex formulation called MKLdiv-conv. The sparse formulation

for kernel learning based on discriminant analysis [42] was also established. Our proposed methods are able to

achieve state-of-the-art performance on the SCOP PDB-40D benchmark dataset for protein fold recognition

problem. In particular, MKLdiv-dc further improves the fold discrimination accuracy to 75.19% which is a

more than 5% improvement over a competitive Bayesian probabilistic approach [9], SVM margin-based kernel

learning methods [21], and the kernel learning based on discriminant analysis [42]. We further extended the

investigation to the problem of yeast protein function prediction.

Generally, it is difficult to determine which criterion is better for multiple kernel combination since this

problem is highly data-dependent. For the information-theoretic approaches MKLdiv-dc and MKLdiv-conv,

although MKLdiv-dc is not convex and its DC algorithm tends to find a local minima, in practice we would

recommend MKLdiv-dc for the following reasons. Firstly, as mentioned above MKLdiv-dc has a close relation

with the kernel matrix completion problem using information geometry [37,38] and the maximization of the

log likelihood of Gaussian Process regression [29], which partly explains the success of MKLdiv-dc. Secondly,

we empirically observed that MKLdiv-dc outperforms MKLdiv-conv in protein fold recognition and yeast

protein function prediction. Finally, as we showed in Figure 4, the performance of MKLdiv-conv is quite

sensitive to the parameter σ and the choice of σ remains a challenging problem. MKLdiv-dc is relatively

stable with respect to small values of σ and we can fix σ to be a very small number e.g. σ = 10−5. In future,

we are planning to empirically compare performance with other existing kernel integration formulations

on various datasets, and discuss convergence properties of the DC algorithm for MKLdiv-dc based on the

theoretical results of [36].
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Figure 1: (a) depiction of the three-circle dataset; (b) relative change of objective values of MKLdiv-dc
versus iteration number of CCCP; (c) relative change of objective values of MKLdiv-conv versus iteration
number of projected gradient descent (PGD) method; (d) relative change of objective values of subproblem
(13) by SILP (dish-line) and PGD methods; (e) kernel weights learned by MKLdiv-dc; (f) kernel weights
learned by MKLdiv-conv.
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Figure 2: Test set accuracy of individual (bars) and all data sources (horizontal lines) on the protein fold
recognition dataset: (a) MKLdiv-dc and MKLdiv-conv, where the solid line is the performance of MKLdiv-
dc and the star-dashed line is the performance of MKLdiv-conv; (d) SimpleMKL; (f) MKL-RKDA. Kernel
weights: (b) MKLdiv-dc, (c) MKLdiv-conv, (e) SimpleMKL and (g) MKL-RKDA.
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Figure 3: Kernel weights on the dominant data sources SW1SW2CSHPZ which yields the best prediction on
the protein fold recognition dataset: (a) MKLdiv-dc, (b) MKLdiv-conv, (c) SimpleMKL and (d) MKL-RKDA
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Figure 4: Test set accuracy versus different values of σ on the protein fold recognition dataset: (a) MKLdiv-dc
and (b) MKLdiv-conv.
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Figure 5: Performance on the yeast membrane protein function dataset: (a) average ROC score for individual
data sources, using MKLdiv-dc and MKLdiv-conv, where the third bar to last (All-dc) is MKLdiv-dc, the
second bar to last (All-conv) is MKLdiv-conv and the last bar (Averg) is the performance using uniformly
weighted kernels. Kernel weights: (b) MKLdiv-dc and (c) MKLdiv-conv.

Data sources MKLdiv-dc MKLdiv-conv SimpleMKL VBKC MKL-RKDA
Amino acid composition (C) 51.69 51.69 51.83 51.2 ± 0.5 45.43
Predicted secondary structure (S) 40.99 40.99 40.73 38.1 ± 0.3 38.64
Hypdrophobicity (H) 36.55 36.55 36.55 32.5 ± 0.4 34.20
Polarity (P) 35.50 35.50 35.50 32.2 ± 0.3 30.54
van der Walls volume (V) 37.07 37.07 37.85 32.8 ± 0.3 30.54
Polarizability (Z) 37.33 37.33 36.81 33.2 ± 0.4 30.28
PseAA λ = 1 (L1) 44.64 44.64 45.16 41.5 ± 0.5 36.55
PseAA λ = 4 (L4) 44.90 44.90 44.90 41.5 ± 0.4 38.12
PseAA λ = 14 (L14) 43.34 43.34 43.34 38 ± 0.2 40.99
PseAA λ = 30 (L30) 31.59 31.59 31.59 32 ± 0.2 36.03
SW with BLOSUM62 (SW1) 62.92 62.92 62.40 59.8 ± 1.9 61.87
SW with PAM50 (SW2) 63.96 63.96 63.44 49 ± 0.7 64.49
All data sources 73.36 71.01 66.57 68.1± 1.2 68.40

Uniform weighted 68.40 68.40 68.14 − 66.06

Table 1: Performance with individual and all data sources. The results of VBKC are cited from [9]. The
results not employed there are denoted by ‘−’. The best result for each kernel learning method is marked in
bold.
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Data sources MKLdiv-dc MKLdiv-conv VBKC SimpleMKL MKL-RKDA
C 51.69 51.69 51.2 ± 0.5 51.69 47.25

CS
56.39 55.35 55.7 ± 0.5 55.61 48.30

(20.23s) (0.32s) (−) (14.67s) (0.15s)

CSH
57.70 58.22 57.7 ± 0.6 56.91 55.61

(50.35s) (2.44s) (−) (10.40s) (0.12s)

CSHP
58.48 53.52 57.9 ± 0.9 57.96 56.65

(39.02s) (72.14s) (−) (17.84s) (0.18s)

CSHPV
60.05 53.26 58.1 ± 0.8 57.96 55.87

(75.05s) (86.39s) (−) (15.05s) (0.17s)

CSHPVZ
59.26 53.52 58.6 ± 1.1 59.00 57.70

(135.08s) (99.64s) (−) (20.02s) (0.20s)

CSHPVZL1
60.05 52.74 60.0 ± 0.8 61.35 57.70

(221.75s) (122.74s) (−) (27.38s) (0.21s)

CSHPVZL1L4
62.14 52.74 60.8 ± 1.1 61.61 58.22

(315.70s) (129.08s) (−) (151.38s) (0.25s)

CSHPVZL1L4L14
62.14 61.09 61.5 ± 1.2 60.05 59.53

(450.57s) (57.09s) (−) (42.81s) (0.25s)

CSHPVZL1L4L14L30
62.14 62.14 62.2 ± 1.3 62.40 55.61

(612.72s) (67.29s) (−) (64.74s) (0.25s)

CSHPVZL1L4L14L30SW1
71.80 71.54 66.4 ± 0.8 65.79 66.84

(620.16s) (17.97s) (−) (78.94s) (0.31s)

CSHPVZL1L4L14L30SW1SW2
73.36 71.01 68.1± 1.2 66.57 68.40

(805.11s) (84.21s) (−) (196.42s) (0.31s)

SHPVZL1L4L14L30
60.57 61.09 61.1 ± 1.4 59.00 54.56

(438.89s) (67.92s) (−) (44.79s) (0.25s)

Table 2: Test set accuracy of sequentially adding data sources in the order used by [9, 10]. The result of
Bayesian kernel learning model (VBKC) is cited from [9]. The results not employed there are denoted by
‘−’. The term inside the parenthesis is the CPU running time (seconds). The best test set accuracy of each
kernel learning method is marked in bold.
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Data sources MKLdiv-dc MKLdiv-conv SimpleMKL MKL-RKDA
SW1 62.92 62.92 62.40 61.87

SW1S
65.27 66.31 64.22 64.75

(24.72s) (10.49s) (40.60s) (0.12s)

SW1SW2S
67.10 66.05 64.75 64.49

(48.79s) (4.65s) (61.71s) (0.15s)

SW1SW2CS
73.36 72.32 65.01 67.62

(40.65s) (23.43s) (62.81s) (0.17s)

SW1SW2CSH
74.67 72.32 66.31 67.88

(72.19s) (8.69s) (75.11s) (0.15s)

SW1SW2CSHP
74.93 74.41 66.31 69.71

(123.98s) (11.63s) (74.85s) (0.18s)

SW1SW2CSHPZ
75.19 73.36 68.92 66.05

(189.91s) (15.00s) (109.09s) (0.20s)

SW1SW2CSHPZV
74.41 74.41 66.31 69.19

(278.47s) (17.47s) (117.14s) (0.25s)

SW1SW2CSHPZVL1
73.10 73.32 66.84 68.66

(404.82s) (49.41s) (101.01s) (0.25s)

SW1SW2CSHPZVL1L4
72.84 72.06 67.10 67.62

(576.29s) (57.83s) (107.88s) (0.25s)

SW1SW2CSHPZVL1L4L14
72.58 72.36 66.84 69.19

(748.72s) (19.43s) (163.85s) (0.28s)

SW1SW2CSHPZVL1L4L14L30
73.36 71.01 66.57 68.40

(811.54s) (83.93s) (197.57s) (0.31s)

Table 3: Test set accuracy of sequentially adding fold discriminatory data sources (continued) according to
the ranking of kernel weights obtained by MKLdiv-dc over all data sources. The results of the Bayesian
kernel learning method were not employed in [9], hence we do not list in the table. The term inside the
parenthesis is the CPU running time (seconds). The best test set accuracy of each kernel learning method
is marked in bold.
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Additional Files
Additional file 1 – Column generation method for SILP
Here we briefly describe the column generation method (see e.g. [13]) for SILP (16) to solve the subproblem (15), i.e.

maxγ,λ γ
s.t.

∑m

`=1 λ` = 1, λ` ≥ 0
γ −

∑m

`=1 λ`S`(α) ≤ S0(α), ∀α
(19)

where S`(α) = Tr
(
αα>K`

)
+ ∂g(λ(t))

∂λ`
, and S0(α) = −2Tr(α>A) + σTr(α>α). The basic idea is to compute the

optimum (λ, γ) by linear programming for a restricted subset of constraints, and update the constraint subset based
on the obtained suboptimal (λ, γ). More precisely, given restricted constraints {αp : p = 1, ..., P}, first we find the
intermediate solution (λ, γ) by the following linear programming optimization with P linear constraints

maxγ,λ γ

s.t.
∑

`

λ` = 1, 0 ≤ λ ≤ 1

γ −
∑

`

λ`S`(αp) ≤ S0(αp),∀p = 1, . . . , P.

(20)

This problem is often called the restricted master problem. Then, we find the next constraint with the maximum
violation for the given intermediate solution (λ, γ), i.e.

min
α

d∑

`∈Nd

λ`S`(α) + S0(α). (21)

If the optimizer α∗ of the above equation satisfies
∑

` λ`S`(α
∗) + S0(α) ≥ γ then the current intermediate solution

(λ, γ) is optimal for the optimization (19). Otherwise α∗ should be added to the restriction set. We repeat the above
iteration until convergence which is guaranteed to be globally optimal, see e.g. [13, 34]. In a similar fashion to the
convergence criterion in [34], the algorithm stops when

∣∣∣∣∣∣∣∣
1 −

∑

`

λ
(t−1)
` S`(α

(t)) + S0(α
(t))

γ(t−1)

∣∣∣∣∣∣∣∣
≤ ε.

For instance, the threshold ε is usually chosen to be 5 × 10−4.

Additional file 2–Sparse formulation of kernel learning based on discriminant analysis
In this appendix we show that kernel learning for regularized discriminant analysis [42] is closely related to the sparse
regularization. To see this, consider the following algorithm

min
f,b

µ
∑

i∈Nn

(
yi −

∑

`∈Nm

f`(x
`
i) − b

)2
+

1

2
(

∑

`∈Nm

‖f‖H`
)2

s.t. f` ∈ H`, ` ∈ Nm
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Using the fact [26] that min
{∑

`∈Nm
‖f`‖

2
K`

/λ` : λ ∈ 4
}

=
( ∑

`

‖f`‖K`

)2

, the above equation is identical to

min
f,λ,b

µ
∑

i∈Nn

(
yi −

∑

`∈Nm

f`(x
`
i) − b

)2

+
1

2

∑

`∈Nm

‖f`c‖
2
H`

λ`

s.t. λ ∈ 4, f` ∈ H`, ∀ ` ∈ Nm .

(22)

The equivalence between the above algorithm and RKDA kernel learning becomes clear if we formulate its dual
problem as follows:

Theorem 2 Let Kλ =
(∑

`∈Nm
λ`K`(x

`
i , x

`
j)

)
ij∈Nn

, In be the identity matrix and 1n be an n-dimensional column

vector of all ones. Define P = In −
1n1

>

n

n
, K̃λ = PKλP , and ȳi = yi −

∑
j∈Nn

yj for any i ∈ Nn. Then, the dual
problem of algorithm (22) can be written as

minλ∈4 maxα

∑
i αiȳi −

1
4

∑
i α2

i − 1
4γ

∑
i,j αiαjK̃λ(xi, xj),

where γ = 1
2µ

.

Proof: Taking the minimization of b first, algorithm (22) yields b = 1
n

∑
i∈Nn

(yi −
∑

`∈Nm
f`(x

`
i)). Then, algorithm

(22) can be further rewritten as

min
f,λ

µ
∑

i∈Nn

(
ȳi −

∑

`∈Nm

f̄`(x
`
i)

)2

+
1

2

∑

`∈Nm

‖f`‖
2
H`

λ`

s.t. λ ∈ 4, f` ∈ H`, ∀ ` ∈ Nm .

(23)

Here, for any ` and i, f̄`(x
`
i) = f`(x

`
i) −

1
n

∑
j∈Nn

f`(x
`
j) which can be further represented by f̄`(x

`
i) = 〈K`(xi

`, ·) −
1
n

∑
j∈Nn

K`(x
`
j , ·), f`〉K`

. Then, letting ξi = ȳi −
∑

`∈Nm
f̄`(xi) for any i and solving the standard Lagrangian

formulation of (23) with Lagrangian variables α yields

min
λ∈4

max
α

∑

i

αiȳi −
1

4µ

∑

i

α2
i −

1

2

∑

i,j

αiαjK̃λ(xi, xj).

Now, replacing αi by µαi and letting µ = 1
2γ

completes the argument. �

Let n− and n+ denote the number of samples in class +1 and −1. If we redefine the class indicator output y, for
any i ∈ Nn by yi = n

2n−n+
if xi is in class +1, otherwise − n

2n−n+
, then the class indicator output ȳ reduces to the

vector a defined in [42] for binary classification, i.e.

ȳi = ai =

{
1

n+
, if xi is in class +1

− 1
n−

, otherwise.

Now we turn our attention to multiclass classification. To this end, consider

min
f,b

µ
∑

i∈Nn

∑

c∈NC

(
yic −

∑

`∈Nm

f`c(x
`
i) − bc

)2
+

1

2

∑

`∈Nm

( ∑

c∈NC

‖f`c‖
2
H`

) 1
2

s.t. f`c ∈ H`, ∀ c ∈ NC , ` ∈ Nm

Using the above argument for binary classification it is easy to check its dual problem is as follows

minλ∈4 maxα

∑
i,c αicȳic −

1
4

∑
i,c α2

ic −
1
4γ

∑
i,j,c αicαjcK̃λ(xi, xj) (24)

where ȳic = yic −
∑

j∈Nn
yjc. Let nc denote the number of samples in class c. If we redefine the class indicator matrix

Y, for any i ∈ Nn and c ∈ NC by yic = 1
2

√
n
nc

if yi = c, otherwise − 1
2

√
n
nc

, then the class indicator matrix Ȳ reduces

to the matrix H defined in [42] for multi-class classification, i.e.

ȳic = hi(j) =

{ √
n
nc

−
√

nc

n
, if yi = c

−
√

nc

n
, otherwise.

Now we can see that the dual problem of algorithm (24) is exactly the same as the formulation (see equation (36)

in [42]) of RKDA kernel learning.
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