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1 Method and Datasets

The CScape classifier is described in Rogers et al [1] and is trained with positive (disease-driver)
variant data from COSMIC [2] and neutral variant data from the 1000 Genomes project [3]. The
classifier presents an associated confidence measure, or p-score, on the range 0 for neutral to 1
for disease-driver, thus 0.7 means an 70% probability of neutral. This predictor is available at
http://cscape.biocompute.org.uk/. CScape has sub-classifiers covering prediction in coding and non-
coding regions of the cancer genome (CS-coding and CS-noncoding). To construct this classifier we
investigated a variety of kernel-based methods [4] using the scikit-learning package (version 0.17.1).
We found that gradient boosting [8] gave the best performance on validation data. We used a va-
riety of different data sources to train the classifier, which are more fully described in our earlier
paper [1]. For example, for coding prediction we used feature groups labelled VEP (variant effect
prediction, inclusive of amino acid substitution), 46-way and 100-way conservation, genomic context
measures and spectrum kernels [4] with the latter covering genomic sequence information. Thus single
nucleotide variants in genomic regions which are highly conserved across species are more likely to be
functional in human disease, relative to variants in regions where there has been significant sequence
variation across species. This observation is then used as a possibly informative data source via the
feature groups 46-way conservation and 100-way conservation (the split between these two is based
on the range of species considered). For non-coding prediction we used feature groups such as 46-way
conservation, 100-way conservation, spectrum, genomic context and mappability (the latter measur-
ing the uniqueness of a region), for example. To incorporate these feature groups and construct the
sub-classifiers, CS-coding and CS-noncoding, we used a greedy sequential learning approach based on
leave-one-chromosome-out cross-validation (LOCO-CV). Thus we can order different prospective data
sources according to accuracy on unseen validation data. Via a greedy approach we start by combining
the two top-ranked data sources into a single kernel [4] and record its balanced accuracy according to
LOCO-CV. We then add further prospective data sources in descending order of balanced accuracy,
constructing a kernel for each combination of data sources. We terminate this greedy sequential ad-
dition of data sources if the balanced validation accuracy reaches a plateau or starts to decline. This
terminates the learning process and therefore we can proceed to evaluation on unseen test data.
To derive predicted SNV-driver counts we used unseen test data from the International Cancer Genome
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Consortium [5]. In Supplementary Table 1 we present the total sample sizes, number of hypermu-
tator samples excluded and the number of zero-counts (i.e. for the given threshold on the p-score
no disease-driver single nucleotide variants were predicted). The hypermutator estimations and zero-
count estimations in Table 1 correspond to a threshold on the p-score determined by a FDR (false
discovery rate) choice of 5% and are derived from coding region prediction only (i.e. from CS-coding).
We excluded samples with evidence of hypermutation in the determination of the results in Figures 1
to 5 (main paper). Our criterion for exclusion was prediction of more than 500 SNV-drivers in coding
regions. We did not include predictions from non-coding regions in our estimation of a prospective hy-
permutation example because of the weak performance of the non-coding predictor (CS-noncoding) [1]
and the poor extent of known functionality of non-coding genomic regions. Skin cutaneous melanoma
(SKM) had the highest proportion of hypermutators at 36.7%. Next were gastric adenocarcinoma
(STAD) and colon adenocarcinoma (COAD) at 22.6% and 20.9% respectively. In the Table we state
zero-count instances for prediction in coding regions and zero-count instances were included in counts.
For the majority of cancer types there are only a limited number of instances with a SNV-driver count
of zero, in coding regions. Thyroid cancer, with its very low overall mean count, could be expected to
have a higher number of these but the proportion is only 6.6% (for a FDR of 5%). Neuroblastoma,
though, also has a similarly low mean count for SNV-drivers and the proportion of samples with a
zero count is high at 46.0%. This may indicate a more crucial role for other types of drivers with this
disease, beyond single point mutations.
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Cancer subtype Typecode Sample size Hypermutators Zero-count

Bladder Urothelial BLCA 233 12 0

Breast BRCA 150 3 2

Cervical Squamous Cell Carcinoma CESC 194 12 5

Colon Adenocarcinoma COAD 215 45 0

Colorectal COCA 187 18 6

Early Onset Prostate EOPC 62 0 22

Esophageal ESCA 228 0 15

Gastric GACA 9 0 0

Kidney Renal Clear Cell Carcinoma KIRC 404 0 2

Kidney Renal Papillary Cell Carcinoma KIRP 159 0 0

Brain Lower Grade Glioma LGG 283 1 6

Liver LICA 421 3 20

Liver Hepatocellular Carcinoma LIHC 188 2 1

Malignant Lymphoma MALY 100 1 1

Neuroblastoma NBL 106 0 46

Oral ORCA 131 2 1

Ovarian OV 181 0 0

Pancreatic PACA 687 16 10

Prostate PRAD 488 2 32

Rectum Adenocarcinoma READ 79 4 0

Renal Cell RECA 105 0 6

Skin Cutaneous Melanoma SKCM 335 123 2

Gastric Adenocarcinoma STAD 288 65 0

Thyroid THCA 528 1 35

Uterine Corpus Endometrial Carcinoma UCEC 246 36 1

Table 1: This Table gives the numbers of samples (drawn from the International Cancer Genome
Consortium dataset [5]) used as test data in our study (under sample size), followed by the number
of hypermutators and numbers with zero counts for SNV-drivers (for a FDR of 5%) in the latter two
columns (for coding region prediction). Samples exhibiting potential hypermutation were excluded
from our study, instances where zero SNV-driver counts were predicted, were included.
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Figure 1: The median, mean and dN/dS predictions for right: breast cancer and left: thyroid cancer.
The mean or median number of number of disease-driver mutations (y-axis) is plotted against the
threshold on the p-score (x-axis) which is an estimation of the confidence in a class assignment to
positive (disease-driver) status for a variant identified in the cancer genome. The horizontal line is the
estimate of the mean proposed by Martincorena et al [7]. If we lower the threshold on the confidence
(p-score) we allow through more positive predictions.

2 Threshold dependency of the counts and comparison with other
methods

In Supplementary Figure 1 we plot the median and means for the predicted numbers of SNV-drivers
in coding regions of the breast cancer (left) and thyroid cancer (right) genome. The horizontal line
is the estimate from Martincorena et al [7]. At a threshold on the p-score of 0.9 the estimates are in
approximate agreement. However, as noted in the main text, if we should make a less stringent choice
on the p-score (the confidence in the prediction) then this lets through more positive (disease-driver)
predictions. However, retaining this choice for the p-score threshold (0.9), we see from Supplementary
Figure 2, that there is an approximate agreement on the cancer types with the smallest mean for
the SNV-driver counts (e.g. thyroid cancer) and the largest (e.g. bladder urothelial cancer). CScape
consistently gives higher mean and median counts over Martincorena et al [7]. However, the concept
that the sizes of coding SNV-driver sets is relatively small is confirmed.

3 Additional plots complementing Figure 3 of the main paper

We give two additional plots below complementing Figure 3 of the main text. In Supplementary
Figure 3 we present the full set of curves for the mean counts. In Supplementary Figure 4 we present
the full set of curves of the median counts of SNV-drivers across all cancers (since only a selection is
presented in Figure 3 of the main paper).
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Figure 2: The mean number of SNV-drivers from Martincorena et al [7] (green) and the mean number
of SNV-drivers from CScape (orange) for a variety of common solid tumours, for single nucleotide
variants in coding regions of the cancer genome. These results are presented for a threshold of 0.9 on
the p-scores from CScape and include those cancer types covered by Martincorea et al [7].

4 Estimating the number of SNV-drivers by stage of disease

Data was extracted from the International Cancer Genome Consortium database [5]. Only in a subset
of instances were we able to extract the clinical annotation by stage and the data used for constructing
Supplementary Tables 2 and 3 therefore differs from, and is a subset of, data used for deriving the
figures in the main paper. Not all cancer samples have been staged since some cancer staging requires
molecular characteristics to be taken into account (for example, breast cancer): these cancers were
omitted from the staging analysis. In line with our discussion in the main paper we used a cutoff on
the p-score of 0.88 in coding regions.
A trend towards increasing numbers of SNV-drivers with increasing stage of disease is not well es-
tablished for malignant lymphoma, oral, pancreatic cancer, neuroblastoma, renal and thyroid cancer.
For neuroblastoma, thyroid and renal cancer the numbers of SNV-drivers is low with initial stage of
disease and remains fairly constant and low throughout. For other cancers there is a more pronounced
trend towards increasing numbers of SNV-drivers with stage of disease. This observation could be
applied to colorectal cancer where the numbers of SNV-drivers evolves from a mean of 16.6 for Stage
I to 42.6 at Stage IV, supported by large sample sizes at each stage. Liver cancer is another cancer
with increasing number of SNV-drivers with stage of disease. Finally, both early onset (EOPC) and
late onset prostate cancer (PRAD) have a systematic trend of increasing numbers of SNV-drivers as
we proceed from early stage to late stage disease.
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Figure 3: A plot of the means (y-axis) versus the p-score threshold (x-axis) across the full range of
common solid tumours. This Figure complements Figure 3 of the main paper which gives the median
counts for SNV-drivers across the same range of common solid tumours. Relative to the plot with the
median counts (main paper, Figure 3) there is some shift in the relative ordering of different type of
cancer in terms of driver counts.
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Figure 4: A plot of the medians (y-axis) versus the p-score threshold (x-axis) for all the cancers
considered in the main paper. This Figure complements Figure 3 of the main paper which gives the
median counts for SNV-drivers across a selection of common solid tumours.
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Name or Stage Mean
Lower
Quartile

Upper
Quartile

Sample
Size

1. Bladder Urothelial
(BLCA)

0a 11.5 7.3 15.7 6

I 12.9 9.3 16.4 31

II 15.2 9.6 20.8 29

III 12.9 7.7 18.1 14

IIIA 15.7 10.1 21.4 21

2. Colorectal (COCA)

I 16.6 8.3 24.9 40

IIA 27.8 15.5 40.2 49

IIB 25.4 15.0 35.8 46

IIIA 7.0 4.4 9.6 8

IIIB 19.4 12.2 26.6 77

IIIC 31.5 8.4 54.6 27

IVA 42.6 18.6 66.6 49

3. Early Onset
Prostate Cancer (EOPC)

I 2.5 1.9 3.1 102

IIA 3.8 1.5 6.2 42

IIIB 6.5 4.4 8.6 2

4. Esophageal (ESCA)

I 13.6 7.5 19.6 12

II 9.9 8.9 10.9 135

III 10.0 8.5 11.6 92

IVA 12.2 9.1 15.3 16

5. Gastric (GACA)

IA 16.6 1.3 31.9 8

IB 3.8 3.4 4.1 5

II 10.0 10.0 10.0 1

IV 10.2 6.0 14.4 65

6. Liver (LICA)

IA 45.6 24.5 66.7 31

II 66.9 6.9 127.0 13

IIIA 169.2 33.3 305.1 5

IVB 135.0 135.0 135.0 1

7. Malignant
Lymphoma (MALY)

I 7.4 5.2 9.6 30

II 11.4 6.5 16.3 34

III 9.2 6.9 11.4 79

IV 6.8 5.6 8.0 70

Table 2: A list a seven cancer types with the frequency counts for the drivers stratified by stage.
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Name or Stage Mean
Lower
Quartile

Upper
Quartile

Sample
Size

8. Neuroblastoma
(NBL)

IIA 1.0 1.0 1.0 1

III 1.3 0.8 1.9 3

IV 1.1 1.0 1.2 3

9. Oral
(ORCA)

II 13.3 7.8 18.7 4

III 14.8 4.3 25.2 8

IVA 11.1 9.5 12.7 112

IVB 24.0 24.0 24.0 1

10. Ovarian
(OV)

III 9.4 7.9 11.0 78

IV 10.3 5.0 15.6 14

11. Pancreatic
(PACA)

IA 16.9 12.9 21.0 12

IB 20.3 14.4 26.3 44

II 12.0 7.8 16.2 4

IIA 29.1 5.5 52.7 30

IIB 24.8 15.7 34.0 74

III 21.7 14.7 28.6 9

IV 17.0 8.1 25.9 3

12. Prostate
(PRAD)

IIB 4.4 3.9 4.9 301

IIC 7.6 4.7 10.5 13

IIIB 16.4 9.1 23.7 19

IVA 21.8 6.8 36.6 4

13. Renal Cell
(RECA)

I 3.4 2.7 4.1 114

II 3.3 2.2 4.5 33

III 3.2 2.2 4.2 56

IV 3.0 2.1 4.0 34

14. Thyroid
(THCA)

I 2.0 1.7 2.4 55

II 2.4 1.2 3.7 7

III 2.1 1.7 2.6 24

Table 3: A second list a seven cancer types with the frequency counts for the drivers stratified by
stage.
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5 The top ranked driver genes according to cancer type

In this section we present the top five driver genes categorised according to cancer type, for the 25
cancer types listed in Table 1 of this Supplementary. To identify these genes we have used the CScape
classifier on data from the International Cancer Genome Consortium [5]. Since CScape was trained
on COSMIC [2] and 1000 Genomes [3] data, this constitutes an independent test set. A variant was
labelled as a driver if the associated p-score for the confidence in that status exceeded 0.88. This
value for the p-score cutoff was selected because it gives a false discovery rate (FDR) of 5% (see main
paper, Section 2). If a gene had at least one such SNV-driver, we incremented the sum and divided
the final total by the number of donor samples considered for that cancer type. Given that sample
sizes (number of donors) are generally quite large, the differences between occurrence rates of such
driver mutations by gene are very statistically significant.
The lists below cover the top five genes by type of cancer, as discussed in the main paper. At the
CScape website (http://cscape.biocompute.org.uk/), under the Help/Documentation webpage, we give
a downloadable file (driver-genes) which gives these ranked genes down to the level of no SNV-drivers
in the gene with confidence greater than 0.88.

10



1. Bladder Urothetial BLCA

Gene name No. with a p ≥ 0.88/Total no. donors Percentage

MUC4 58/236 24.5

TTN 31/236 13.1

TTN −AS1 30/236 12.7

TP53 28/236 11.9

PIK3CA 24/236 10.2

2. Breast BRCA

Gene name No.with a p ≥ 0.88/Total no. donors Percentage

TP53 42/191 22.0

PIK3CA 17/191 8.9

TTN 11/191 5.8

TTN −AS1 10/191 5.2

AKT1 9/191 4.7

3. Cervical Squamous Cell Carcinoma CESC

Gene name No.with a p ≥ 0.88/Total no. donors Percentage

PIK3CA 47/194 24.2

TTN 26/194 13.4

TTN −AS1 26/194 13.4

MUC4 26/194 13.4

KMT2C 22/194 11.3

4. Colon Adenocarcinoma COAD

Gene name No. with a p ≥ 0.88/Total no. donors Percentage

APC 124/253 49.0

KRAS 103/253 40.7

CTC − 554D6.1 101/253 39.9

TP53 82/253 32.4

TTN 58/253 22.9

5. Colorectal COCA

Gene name No. with a p ≥ 0.88/Total no. donors Percentage

APC 125/319 39.2

KRAS 106/319 33.2

CTC − 554D6.1 104/319 32.6

TP53 97/319 30.4

TTN 49/319 15.3

6. Early onset prostate EOPC

Gene name No. with a p ≥ 0.88/Total no. donors Percentage

TP53 10/202 5.0

RY R2 6/202 3.0

REM1 4/202 2.0

LRP1B 4/202 2.0

LOXHD1 4/202 2.0

Table 4: Top 5 ranked driver genes for bladder urothelial, breast, cervical, colon adenocarcinoma,
colorectal and early onset prostate cancer.
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7. Esophageal ESCA

Gene name No. with a p ≥ 0.88/Total no. donors Percentage

TP53 163/330 49.3

TTN 26/330 7.8

PIK3CA 24/330 7.3

TTN −AS1 23/330 7.0

CSMD3 22/330 6.7

8. Gastric GACA

Gene name No. with a p ≥ 0.88/Total no. donors Percentage

TP53 23/92 25.0

LRP1B 8/92 8.7

KMT2C 6/92 6.6

CSMD3 5/92 5.4

UNC80 4/92 4.3

9. Kidney Renal Clear Cell Carcinoma KIRC

Gene name No. with a p ≥ 0.88/Total no. donors Percentage

MUC4 57/408 14.0

PBRM1 46/408 11.3

V HL 41/408 10.0

TTN 19/408 4.7

TTN −AS1 17/408 4.2

10. Kidney Renal Papillary Cell Carcinoma KIRP

Gene name No. with a p ≥ 0.88/Total no. donors Percentage

MUC4 11/165 6.7

TTN 9/165 5.5

TTN −AS1 8/165 4.8

MET 7/165 4.2

SMARCA4 5/165 3.0

11. Brain Lower Grade Glioma LGG

Gene name No. with a p ≥ 0.88/Total no. donors Percentage

IDH1 215/283 76.0

TP53 79/283 25.4

PIK3CA 17/283 6.0

RP11− 799N11.1 15/283 5.3

CTC − 297N7.11 15/283 5.3

12. Liver LICA

Gene name No. with a p ≥ 0.88/Total no. donors Percentage

TP53 66/399 16.5

TTN 59/399 14.8

TTN −AS1 56/399 14.0

LRP1B 48/399 12.0

RY R2 47/399 11.8

Table 5: Top 5 ranked driver genes for esophageal, gastric, kidney renal clear cell carcinoma, brain
lower grade glioma and liver cancer.
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13. Liver Hepatocellular Carcinoma LIHC

Gene name No. with a p ≥ 0.88/Total no. donors Percentage

CTNNB1 43/189 22.8

TP53 30/189 15.9

TTN 19/189 10.1

TTN −AS1 18/189 9.6

UNC80 12/189 6.3

14. Malignant Lymphoma MALY

Gene name No. with a p ≥ 0.88/Total no. donors Percentage

CREBBP 54/241 22.4

KMT2D 48/241 19.9

EZH2 36/241 14.9

TP53 32/241 13.3

STAT6 21/241 8.7

15. Neuroblastoma NBL

Gene name No. with a p ≥ 0.88/Total no. donors Percentage

ALK 10/205 4.9

PTPN11 5/205 2.4

RP11− 799N11.1 4/205 2.0

NF1 4/205 2.0

CTC − 297N7.11 4/205 2.0

16. Oral ORCA

Gene name No. with a p ≥ 0.88/Total no. donors Percentage

TP53 55/125 44.0

FAT1 25/125 20.0

NOTCH1 19/125 15.2

TTN 17/125 13.6

TTN −AS1 17/125 13.6

17. Ovarian OV

Gene name No. with a p ≥ 0.88/Total no. donors Percentage

TP53 114/211 54.0

TTN 13/211 6.2

TTN −AS1 12/211 5.7

CSMD3 12/211 5.7

CTC − 297N7.11 9/211 4.2

18. Pancreatic PACA

Gene name No. with a p ≥ 0.88/Total no. donors Percentage

KRAS 563/651 86.5

TP53 266/651 41.0

SMAD4 84/651 12.9

TTN 41/651 6.3

TTN −AS1 38/651 5.8

Table 6: Top 5 ranked driver genes for liver hepatocellular carcinoma, malignant lymphoma, neurob-
lastoma, oral, ovarian and pancreatic cancer.

13



19. Prostate PRAD

Gene name No. with a p ≥ 0.88/Total no. donors Percentage

SPOP 42/684 6.1

TP53 31/684 4.5

MUC4 17/684 2.5

TTN 15/684 2.1

TTN −AS1 14/684 2.0

20. Rectum Adenocarcinoma READ

Gene name No. with a p ≥ 0.88/Total no. donors Percentage

APC 58/93 62.4

CTC − 554D6.1 53/93 57.0

TP53 41/93 44.1

KRAS 38/93 41.0

TTN 19/93 20.4

21. Renal cell RECA

Gene name No. with a p ≥ 0.88/Total no. donors Percentage

PBRM1 56/388 14.4

V HL 50/388 12.9

SETD2 27/388 7.0

MTOR 26/388 6.7

BAP1 17/388 4.4

22. Skin Cutaneous Melanoma SKCM

Gene name No. with a p ≥ 0.88/Total no. donors Percentage

TTN 172/335 51.3

TTN −AS1 164/355 46.1

CTC − 297N7.11 150/355 42.3

BRAF 150/355 42.3

RP11− 799N11.1 146/355 41.1

23. Gastric Adenocarcinoma STAD

Gene name No. with a p ≥ 0.88/Total no. donors Percentage

TTN 78/287 27.2

TTN −AS1 73/287 25.4

TP53 73/287 25.4

CSMD3 44/287 15.3

LRP1B 39/287 13.6

24. Thyroid THCA

Gene name No. with a p ≥ 0.88/Total no. donors Percentage

BRAF 303/543 55.8

TTN 7/543 1.3

TTN −AS1 7/543 1.3

NRAS 7/543 1.3

KMT2C 7/543 1.3

Table 7: Top 5 ranked driver genes for prostate, rectum adenocarcinoma, renal, skin cutaneous
melanoma, gastric adeoncarcinoma and thyroid cancer.
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25. Uterine Corpus Endometrial Carcinoma UCEC

Gene name No. with a p ≥ 0.88/Total no. donors Percentage

PIK3CA 88/250 35.2

PTEN 80/250 32.0

CTNNB1 69/250 27.6

ARID1A 54/250 21.6

KRAS 50/250 20.0

Table 8: Top 5 ranked driver genes for uterine corpus endometrial carcinoma.

6 Prediction on non-coding disease-drivers

We pursued a study of non-coding SNV-drivers proposed in the Pan-Cancer Analysis of Whole
Genomes (PCAWG) study of Rheinbay et al [10]. The dataset used is derived from the Interna-
tional Cancer Genome Consortium [5] and the The Cancer Genome Atlas [6] and independent of the
datasets used to train CScape (COSMIC [2] and 1000 Genomes [3]). The results are tabulated in
Supplementary Table 9 and derive from listed prospective non-coding drivers available among their
list of the top 50 single point mutations drivers (Extended Data Figure 1 in [10]). A restriction has
been made to prospective drivers located on autosomes and labelled as residing in non-coding regions
of the cancer genome.
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Chr. Position Ref. Mut. Confidences Prediction

5 1295228 G {A,C,T} {0.491,0.637,0.727} Possibly oncogenic

12 25389285 T {A,C,G} {0.717,0.477,0.578} Possibly oncogenic

5 1295250 G {A,C,T} {0.543,0.557,0.669} Oncogenic

14 106326944 C {A,G,T} {0.682,0.662,0.558} Oncogenic

19 49990694 G {A,C,T} {0.690,0.536,0.708} Oncogenic

14 106326944 C {A,G,T} {0.682,0.662,0.558} Oncogenic

19 49990694 G {A,C,T} {0.690,0.536,0.708} Oncogenic

14 106326944 C {A,G,T} {0.682,0.662,0.558} Oncogenic

14 106326713 G {A,C,T} {0.636,0.632,0.681} Oncogenic

14 106328942 G {A,C,T} {0.465,0.567,0.647} Possibly oncogenic

6 142706206 G {A,C,T} {0.781,0.814,0.827} Oncogenic

8 56987141 C {A,G,T} {0.730,0.605,0.608} Oncogenic

14 106329192 G {A,C,T} {0.622,0.672,0.725} Oncogenic

14 106326887 C {A,G,T} {0.575,0.587,0.600} Oncogenic

14 106326619 C {A,G,T} {0.670,0.652,0.589} Oncogenic

14 106326618 G {A,C,T} {0.622,0.632,0.681} Oncogenic

14 106327115 G {A,C,T} {0.265,0.505,0.702} Possibly oncogenic

14 106327559 G {A,C,T} {0.664,0.483,0.388} Possibly oncogenic

14 106240243 G {A,C,T} {0.633,0.599,0.661} Oncogenic

3 164903710 T {A,C,G} {0.711,0.531,0.709} Oncogenic

14 106329196 C {A,G,T} {0.706,0.547,0.683} Oncogenic

14 106329852 C {A,G,T} {0.683,0.664,0.554} Oncogenic

14 106329550 G {A,C,T} {0.530,0.674,0.720} Oncogenic

10 115511590 G {A,C,T} {0.702,0.740,0.734} Oncogenic

10 115511593 C {A,G,T} {0.565,0.648,0.684} Oncogenic

19 2151793 C {A,G,T} {0.719,0.721,0.696} Oncogenic

14 106326877 T {A,C,G} {0.518,0.401,0.398} Possibly oncogenic

14 106329236 G {A,C,T} {0.486,0.517,0.616} Possibly oncogenic

14 106329350 C {A,G,T} {0.674,0.657,0.596} Oncogenic

14 106327417 C {A,G,T} {0.527,0.560,0.670} Oncogenic

1 103599442 T {A,C,G} {0.436,0.306,0.294} Benign

Table 9: The top commonly recurrent single point driver mutations in non-coding regions proposed
by Rheinbay et al (Extended Data Figure 1 in [10]). This table only gives single nucleotide variants
located on autosomes and labelled by our classifier as residing in non-coding regions. The table
presents the chromosome (Chr.), position and reference nucleotide (Ref.) based on the GRCh37
reference genome. The three prospective variants are presented (Mut.) with the confidence of driver-
status given in the next column, in the same relative order, and derived from our predictor CScape
(http://cscape.biocompute.org.uk)). Mutation at a position is labelled oncogenic if all three variants
from reference are predicted as having disease-driver status. Mutation at a position is labelled possibly
oncogenic if some variants from reference are predicted as having disease-driver status.
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